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Theoretical approaches for calculating rate constants of chemical reactionsseither the microcanonical rate
for a given total energyk(E) or the canonical rate for a given temperaturek(T)sare described that are both
“direct”, i.e., bypass the necessity of having to solve the complete state-to-state quantum reactive scattering
problem, yet also “correct”, i.e., in principle exact (given a potential energy surface, assuming nonrelativistic
quantum mechanics, etc.) Applications to a variety of reactions are presented to illustrate the methodology
for various dynamical situations, e.g., transition-state-theory-like dynamics where the system moves directly
through the interaction (transition-state) region and reactions that form long-lived collision complexes. It is
also shown how this rigorous quantum theory can be combined with the Lindemann mechanism for describing
the effects of collisions with a bath gas, so as to be able to treat recombination reactions and other effects of
pressure. Finally, several ways are discussed for combining these rigorous approaches for small molecule
dynamics with an approximate treatment of (perhaps many) other degrees of freedom (i.e., a solvent, a substrate,
a cluster environment) that may be coupled to it.

I. Introduction

If one wishes to describe a bimolecular chemical reaction at
the most detailed level possible, i.e., its state-to-state differential
scattering cross section, then it is necessary to solve the
Schrödinger equation (with scattering boundary conditions) to
obtain theS-matrix {Snp,nr(E,J)} as a function of total energyE
and total angular momentumJ, in terms of which the cross
sections can be calculated as follows:1

Here nr (np) labels the reactant (product) rotational and
vibrational states,θ is the scattering angle between the relative
velocity vectors of reactants and products,mr (mp) is the

projection of total angular momentum onto the relative velocity
vector of the reactants (products), and dmm′

J (θ) is the Wigner
rotation matrix. A number of such state-to-state quantum
reactive scattering calculations have actually been carried out
for simple reactions, mostly using time-independent scattering
methodology based on theS-matrix Kohn variational approach2

or coupled channel methods utilizing hyperspherical coordi-
nates;3 these include H or D+ H2(para)f H2(ortho) or HD+
H, F+ H2 f HF + H, Cl + H2 f HCl + H, O+ HCl f OH
+ Cl, O + H2 f OH + H, and H+ O2 f OH + O.

In the vast majority of chemical applications, however, one
needs only therate constantfor the reaction, either canonical
(i.e, characterized by a temperatureT), k(T), or microcanonical
(characterized by the total energyE), k(E); k(T) is usually the
quantity of interest for bimolecular reactions, andk(E) for
unimolecular reactions. These rate constants are appropriate

σnprnr
(θ,E) )

|(2iknr)
-1∑

J

(2J+ 1) dmp,mr

J (θ) Snp,nr(E,J)|
2 (1.1)
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averages of the above cross sections and thus are readily
available if a complete scattering calculation has been carried
out to obtain theS-matrix. The result of this averaging process
is contained very simply in thecumulatiVe reaction probability
(CRP)N(E), which is defined as4

and in terms of which the microcanonical and canonical rate
constantsk(E) andk(T) are given by

whereâ ) (kT)-1, Fr is the density of reactant states per unit
energy, andQr is the reactant partition function per unit volume.
The situation, therefore, is that if one has carried out a

complete reactive scattering calculation and obtained theS-
matrix, then everything about the reaction (in field-free space)
is available, from the most detailed state-specific cross sections
via eq 1.1 to the most averaged quantities, the rate constants
via eqs 1.2 and 1.3 (or anything in between). However, if it is
only the rate constants that are desired, then it clearly seems
inefficient to have to obtain the completeS-matrix, with all its
state-to-state information, and then average this out in construct-
ing the CRP via eq 1.2. One thus seeks adirect way of
calculatingN(E) (or k(T) itself), i.e., one that avoids having to
obtain theS-matrix, yet one that is alsocorrect, i.e., without
any inherent approximations. In applications to complex
chemical reactions it will of course often be necessary to make
approximations, but one would at least like to begin with a
formulation that is free of them. To the extent that such an
approach is possible, it is also reasonable to expect that one
will be able to apply it to more complex reactions than those
for which a complete reactive scattering calculation can be
carried out, simply because one is seeking less detailed
information about the reaction dynamics.
The purpose of this paper is to survey the methodology and

recent applications of this “direct” and “correct” way of
calculating reaction rate constants.5 My own work in this
general area began6 in trying to formulate a more rigorous
quantum mechanical version of transition-state theory (TST).7

This was motivated by insightful work of Pechukas and
McLafferty8 which showed that, within the realm of classical
mechanics, TST is actually an exact theory at sufficiently low
energy. Low energy, of course, is the region most important
for determining thermal rate constants, but at low energy
quantum effects are expected to be significant, hence the desire
for a rigorousquantumanalogue of classical TST. Although
this quest has had some useful byproducts (e.g., semiclassical
versions of TST,9 including the “instanton” approximation4 that
has seen wide use), nothing emerged that one can properly call
a rigorous quantum TST. The methodologies described in the
present paper are, strictly speaking, simply quantumsimulations,
yet it will be seen that in appropriate cases, e.g., simple barrier
crossing dynamics, qualitative vestiges of TST reemerge and
provide a very useful interpretation even in these rigorous
computational approaches. In the case of more complicated
dynamics, e.g., involving formation of a long-lived collision
intermediate, when TST is not an appropriate dynamical
approximation, these rigorous approaches of course still apply.
Section II first sketches the basic theoretical formulation, and

then sections III and IV deal with the practical implementation

and applications of the microcanonical and canonical versions
of the theory, respectively. Section V shows how the effects
of pressure(within the Lindemann picture) on bimolecular
reactions can be included in this rigorous formulation, and
section VI concludes by discussing some approximations that
can be implemented within this overall formulation.

II. Survey of Basic Formulation

a. Classical Mechanics. It is useful first to consider the
“direct” and “correct” way of calculating a rate constant within
classical mechanics. A rate constant is an average of theflux
through some dividing surface that separates reactants from
products. Thus the canonical rate constant is given by

where (p1,q1) denotes the initial conditions of the momenta and
coordinates for classical trajectories of the molecular system
(consisting ofF degrees of freedom, whose classical Hamilton
isH(p,q)). F is the flux factor, which is the rate that trajectories
cross the dividing surface specified by the equation

For example,s(q) is some function of the coordinates of the
system that is negative, say, on the reactant side of the dividing
surface and positive on the product side. (s might be one of
the coordinatessthe “reaction coordinate”sbut it is not neces-
sary to choose the coordinatesq in this way.) F is then given
by

whereh(ú) is the Heaviside function,

That is,h(s(q)) is the “microprobability” that the coordinateq
lies on the product side of the dividing surface, and in eq 2.3c
it has been assumed for simplicity that the coordinates are
cartesian so thatq3 ) p/m (but this can be generalized with no
essential changes). The factorPr in eq 2.1 contains all the
dynamical information: it is, in words, equal to 1 if the trajectory
with these initial conditions is on the product side of the dividing
surface in the infinite future and 0 otherwise; this can be stated
algebraically as

whereq(t) ≡ q(t; p1,q1), or equivalently as

N(E) ) ∑
J

(2J+ 1)∑
np,nr

|Snp,nr(E,J)|
2 (1.2)

k(E) ) [2πpFr(E)]
-1N(E) (1.3a)

k(T) ) [2πpQr(T)]
-1∫-∞

∞
dE e-âEN(E) (1.3b)

kCL(T) )

Qr(T)
-1(2πp)-F∫dp1∫dq1 e-âH(p1,q1) F(p1,q1) Pr(p1,q1)

(2.1)

s(q) ) 0 (2.2)

F(p,q) ) d
dt
h(s(q)) (2.3a)

) δ(s(q))∂s
∂q

‚q3 (t) (2.3b)

) δ(s(q))∂s
∂q

‚p/m (2.3c)

h(ú) ) 1 if ú > 0
0 if ú < 0

(2.4)

Pr(p1,q1) ) lim
tf∞

h[s(q(t))] (2.5)
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Thus Pr(p1,q1), the probability that the trajectory with the
indicated initial conditions lies on the product side of the
dividing surface ast f ∞, is given by the time integral of the
time-evolved flux along the trajectory. Inserting eq 2.6c into
2.1, and interchanging the order of the phase space and time
integrals, gives

where

That is, the rate constant is the time integral of the flux-flux
autocorrelation function.
Equation 2.7 is the desired “direct” and “correct” way of

calculating the thermal rate constant classically. It is “correct”
because it is based on the full classical dynamics (a trajectory
calculation), and no approximations are entailed in going from
eq 2.1 to 2.7. It is “direct” because it requires only dynamical
information about whether or not the trajectory lies on the
product side of the dividing surface ast f ∞; it requires no
information about the product state distribution, and so forth.
It therefore typically requires only short time dynamics to
evaluate eq 2.7, provided the dividing surface is chosen at the
most useful location. (Because of Liouville’s theorem, the result
for k(T) is independent of the location of the dividing surface,
although the correlation functionCf(t) is not.)
TST, as Pechukas and McLafferty8 emphasize, is exact

classically if all trajectories that start out on the dividing surface
at t ) 0 never recross it at a later time. If this is the case, then
F(p(t),q(t)) ≡ δ(s(t))s̆(t) will be identically zero for allt > 0
(becauses(t) will never be zero if the trajectory never returns
to the dividing surface), so thatCf(t) ) 0 for all t > 0. To see
the behavior ofCf(t) for t very close to 0, one makes a short-
time approximation for the trajectory,

and if for convenience one chooses coordinates so thats(q) )
qF is the reaction coordinate, then it is not a lengthy calculation
to show that eq 2.7b for the correlation function gives

whereQq(T) is the partition function of the “activated complex”,
the molecular system minus theFth degree of freedom,

where (p′,q′) ≡ (pk,qk), k ) 1, ...,F - 1, andHq(p′,q′) ) p′2/
2m + V(q′,qF ) 0). Thus in the limit of TST-like dynamics
(no recrossing trajectories) the flux correlation function falls to

zeroVery quickly, and its integral (eq 2.7a) gives the conven-
tional TST result7 for the rate constant

b. Quantum Mechanics. The reason it is worthwhile to
describe the classical situation in as much detail as above is
that the quantum treatment follows it very closely. Thus ref 6
showed that the quantum expression for the rate constant×e2
i.e., eqs 1.2 and 1.3, can be cast in a form analogous to the
classical expression eq 2.1,

where Ĥ, F̂, andPr are quantum operators analogous to the
classical functions in eqs 2.1, with a quantum trace replacing
the classical phase space average in the usual way. Analogous
to eq 2.5, for example, the operatorPr is the long-time limit of
the time-evolved Heaviside function,

but now the time evolution is carried out quantum mechanically
in terms of the time evolution operator exp(-iĤt/p) by the usual
Heisenberg prescription. One can also perform the same
manipulations as in eq 2.6,

That is, the projection operatorPr is the time integral of the
quantum mechanically time-evolved flux operator,

where eq 2.11b has assumed a Cartesian Hamiltonian. Inserting
eq 2.10c into 2.9, and interchanging the order of the trace and
the time integral, gives the same result of eq 2.7a,

but where hereCf(t) is the quantum flux-flux autocorrelation
function,10

Here I make a technical/historical digression on the operator
e-âĤF̂ appearing in eq 2.12b; the uninterested reader may skip
this paragraph. Miller, Schwartz, and Tromp (MST)10 pointed
out that the rate constant given by eq 2.12a is unchanged if the
Boltzmann operator is split and sandwiched aboutF̂ as follows,

for any value ofλ between 0 andâ. They made the symmetrical
choice λ ) â/2 so that the Boltzmann operator could be

Pr )∫0∞dtddth[s(q(t))] (2.6a)

)∫0∞dt δ[s(q(t))] ∂s
∂q

‚q3 (t) (2.6b)

)∫0∞dt F(p(t),q(t)) (2.6c)

kCL(T) ) Qr(T)
-1∫0∞dt Cf(t) (2.7a)

Cf(t) ) (2πp)-F∫dp1∫dq1 e-âH(p1,q1) F(p1,q1) F(p(t),q(t))

(2.7b)

q(t) = q1 +
p1
m
t

p(t) = p1

Cf(t) ) kT
h
Qq(T) δ(t)/2 (2.8a)

Qq(T) ) (2πp)-(F-1)∫dp′∫dq′ e-âHq(p′,q′) (2.8b)

kCL TST(T) ) kT
h
Qq(T)

Qr(T)
(2.8c)

kQM(T) ) Qr(T)
-1 tr(e-âĤF̂Pr) (2.9)

Pr ) lim
tf∞

eiĤt/pĥ(s)e-iĤt/p (2.10)

Pr )∫0∞dtddteiĤt/pĥ(s)e-iĤt/p (2.10a)

)∫0∞dt eiĤt/p ip[Ĥ,ĥ]e-iĤt/p

(2.10b)

)∫0∞dt eiĤt/pF̂e-iĤt/p (2.10c)

F̂ ≡ i
p
[Ĥ,ĥ] (2.11a)

) 1
2m[δ(s(q̂))∂s∂q‚p̂ + p̂‚∂s

∂q
δ(s(q̂))] (2.11b)

kQM(T) ) Qr(T)
-1∫0∞dt Cf(t) (2.12a)

Cf(t) ) tr[e-âĤF̂eiĤt/pF̂e-iĤt/p] (2.12b)

e-âĤF̂ f e-λĤF̂e-(â-λ)Ĥ (2.13)
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combined with the time evolution operators into one “complex
time” evolution operator as follows,

wheretc ) t - ipâ/2. This was particularly useful in trying to
computeCf(t) by analytic continuation methods.11 Earlier work
by Yamamoto,12 using linear response theory,13 also expressed
the rate constant in terms of a flux-flux autocorrelation function,
and his correlation function corresponds toaVeragingeq 2.13
over λ (the Kubo transform),

which can be shown to be14

Although the rate constants given by the MST and the
Yamamoto correlation functions are the same, the correlation
functions are different, particularly so at short time, where
Yamamoto’s is singular. One can see this explicitly by carrying
out the calculation analytically for the free particle case. MST
show that their correlation function for this TST-like case is

A similar calculation for Yamamoto’s correlation functionsthat
is, using eq 2.15b rather than e-âĤ/2F̂e-âĤ/2sgives

Both eq 2.16 and eq 2.17 integrate to givekT/h, as they must,
and for long time they both behave as

For short time, however, they differ:

while

Although the singularity att ) 0 in eq 2.19b is integrable, it is
obviously very undesirable for numerical calculations, which
must be careful to describe this important contribution to the
time integral correctly.
The microcanonical rate expression, i.e., the quantum expres-

sion for the cumulative reaction probabilityN(E), is essentially
the same as eq 2.9 with the replacement of the Boltzmann
operator e-âĤ by the microcanonical density operatorδ(E -
Ĥ),

By making use of the operator identity

it is easy to see that this definition ofN(E), and eq 1.3b giving
k(T) in terms of N(E), immediately recovers the quantum
expression fork(T) in eq 2.9.
By using eq 2.10c for the projection operatorPr, a very

interesting expression can be obtained forN(E),

where the time integral has been changed from (0,∞) to (-∞,∞)
(and divided by 2) since the integrand is an even function oft.
Since the right-most time evolution operator in eq 2.22a sits
next toδ(E- Ĥ) (with a cyclic permutation of operators in the
trace), one can make the replacement e-iĤt/p f e-iEt/p, and then
this scalar phase factor is combined with the other time evolution
operator, to give

The time integral can then be evaluated using the Fourier
representation of the delta function,

so that one obtains the following result,10

showing that the calculation ofN(E) requires only that one have
a way to evaluate the microcanonical density operator.

III. Microcanonical Case

a. Practical Implementation. Thirumalai et al.15 suggested
one interesting way to represent the microcanonical density
operator for use in eq 2.23, namely, a Gaussian prelimit
representation of the delta function,

for R sufficiently large. To evaluate the exponential operator,
they used a Magnus-type expansion,

where ∆R ) R/N, and if ∆R is sufficiently small, simple
approximations for each factor in eq 3.2 are possible. One may
also think of eq 3.1 arising from the Fourier time integral
representation of the delta function,

where a Gaussian convergence factor has been inserted into the
integrand to damp thet f (∞ regions. Equation 3.3 gives eq
3.1, and it is again clear that theR f ∞ limit yields the formally
exact delta function.
A more standard way of cutting off the time integral in the

Fourier representation of the delta function is to use an
exponential convergence factor: thus the integral representation

Cf
MST(t) ) tr[F̂eiĤtc*/pF̂e-iHtc/p] (2.14)

(e-âĤF̂)Kubo≡ 1
â∫0âdλ e-λĤF̂e-(â-λ)Ĥ (2.15a)

(e-âĤF̂)Kubo ) i
pâ
[ĥ,e-âĤ] (2.15b)

Cf
MST(t) ) kT

h
(pâ/2)2

[t2 + (pâ/2)2]3/2
(2.16)

Cf
Y(t) ) kT

h
1

pâ
(xt2 + (pâ)2 - t)3/2

x2txt2 + (pâ)2
(2.17)

lim
tf∞

Cf(t) ∼ kT
h (

pâ
2 )

2
/t3 (2.18)

lim
tf0

Cf
MST(t) ) kT

h
2

pâ[1- 3
2(
2t
pâ)

2] (2.19a)

lim
tf0

Cf
Y(t) ) kT

h
1

pâ(
pâ
2t )

1/2
(2.19b)

N(E) ) 2πp tr[δ(E- Ĥ)F̂Pr] (2.20)

∫-∞

∞
dE e-âE δ(E- Ĥ) ) e-âĤ (2.21)

N(E) ) (2πp)
1
2∫-∞

∞
dt tr[δ(E- Ĥ)F̂eiĤt/pF̂e-iĤt/p] (2.22a)

N(E) ) (2πp)
1
2∫-∞

∞
dt tr[δ(E- Ĥ)F̂ei(Ĥ-E)t/pF̂] (2.22b)

∫-∞

∞
dt ei(Ĥ-E)t/p ) 2πp δ(E- Ĥ)

N(E) ) 1
2
(2πp)2 tr[δ(E- Ĥ)F̂ δ(E- Ĥ) F̂] (2.23)

δ(E- Ĥ) ) (Rπ)
1/2
e-R(Ĥ-E)2 (3.1)

e-R(Ĥ-E)2 ) ∏
n)1

N

e-∆R(Ĥ-E)2 (3.2)

δ(E- Ĥ) ) 1
2πp
∫-∞

∞
dt e-t2/4Rp2ei(E-Ĥ)t/p (3.3)
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is modified by inserting the factor e-εt/p into the integrand,

which damps the long-time behavior. This integral can be
formally evaluated to give the standard expression

whereĜε(E) is the prelimit Green’s function,

The energy parameterε is obviously required to be positive,
and the limitε f 0 is taken at some appropriate stage to obtain
the formally exact result. Equations 3.5a and 3.5b can be
combined to expressδ(E - Ĥ) as

showing that it is a Lorentzian prelimit representation of the
delta function.
A much more effective way16 to represent the Green’s

function and density operator, however, is to takeε in eq 3.5 to
be anabsorbing potentialε(q). This idea was motivated by
the negative imaginary potential that is added to the true
potential energy function,

in time-dependent wave packet calculations17 to prevent reflec-
tions from the edge of the grid on which the wave function is
represented; the negative imaginary potential in eq 3.7 is clearly
a coordinate-dependent generalization of the positive constant
in eq 3.5. Allowingε to be a (positive) function of coordinates,
i.e., a potential energy operator, is much better than taking it to
be a constant, because it can be chosen to be zero in the
physically relevant region of space and only “turned on” at the
edges of this region to impose the outgoing wave boundary
condition. Absorbing flux in this manner, and thus not allowing
it to return to the interaction region, is analogous to the practice
in a classical calculation of terminating trajectories as soon as
they exit the interaction region.
Figure 1 shows a sketch of the potential energy surface for

the generic reaction H+ H2 f H2 + H, with the absorbing
potentialε(q) indicated by dashed contours.ε(q) is zero in the
transition-state region, where the reaction dynamics (i.e.,
tunneling, recrossing dynamics) takes place, and is turned on
outside this region. In practice one chooses the interaction
region (the area between the absorbing potentials) to be as small
as possible, so that as small a basis set as possible can be used
to represent the operators and evaluate the trace. Choosing it
too small, though, will cause the absorbing potentials to interfere
with reaction dynamics one is attempting to describe.
With the microcanonical density operator given by eq 3.5

(with an appropriate choice forε), straightforward algebraic
manipulations (also using eq 2.11a) lead to the following even
simpler form for the cumulative reaction probability,16b

whereεr (εp) is the part of the adsorbing potential in the reactant
(product) valley, andε ≡ εr + εp. This expression may be
evaluated in any convenient basis set that spans the interaction
region and also extends some ways into the absorbing region.
The explicit matrix expression is then

with

It is interesting to note that in eq 3.8 all reference to a specific
dividing surface has vanished; it is implicit that a dividing
surface lies somewhere between the reactant and product
absorbing potentials (cf. Figure 1), but there is no dependence
on its specific choice. This is just as it should be, for as noted
above these formally exact rate expressions are invariant to the
choice of the dividing surface.
In recent calculations it has furthermore been shown18 that

an extremely efficient way to evaluate the trace in eq 3.8 is to
symmetrize the matrix inside the trace operation as follows,

where

P̂(E) is seen to be a Hermitian operator (or matrix), so that its
eigenvalues{pk(E)} are all real, and from eq 3.9a the CRP is
their sum,

It is also easy to see thatP̂(E) is a positive operator, so that its
eigenvalues are all positive. It is not as obvioussbut can be
readily shown16sthat P̂(E) is also bounded by their identity
operator

from which it follows that

The eigenvalues{pk} can thus be thought of asprobabilities,
and then eq 3.10swhich gives theexact N(E) as the sum of
these “eigen reaction probabilities”sbears an interesting re-
semblance to the simple transition-state approximation in which
N(E) is given as a sum of one-dimensional tunneling (or
transmission) probabilities over all states of the activated
complex.
The pragmatic reason for focusing on thereaction probability

operator/matrix P̂(E) defined by eq 3.9 is that it is oflow rank;
that is, the number of its eigenvalues{pk(E)} that are signifi-
cantly different from zero is very small (compared to the
dimension of its matrix representation); the number of its
nonzero eigenvalues is approximately the number of states of
the activated complex of TST that are energetically accessible
at total energyE. This means that a Lanczos iteration procedure
applied toP̂(E) is extremely efficient for determining its nonzero
eigenvalues, the number of such iterations being essentially the
number of nonzero eigenvalues, and this in turn minimizes the

δ(E- Ĥ) ) 1
2πp
∫-∞

∞
dt ei(E-Ĥ)t/p (3.4a)

) 1
πp
Re∫0∞dt ei(E-Ĥ)t/p

(3.4b)

δ(E- Ĥ) ) 1
πp
Re∫0∞dt e-εt/pei(E-Ĥ)t/p (3.4c)

δ(E- H) ) -1
π
Im Ĝε(E) (3.5a)

Ĝε(E) ) (E+ iε - Ĥ)-1 (3.5b)

δ(E- Ĥ) ) ε

π
[ε2 + (Ĥ - E)2]-1 (3.6)

V(q) f V(q) - iε(q) (3.7)

N(E) ) 4 tr[Ĝ+(E)* ε̂pĜ
+(E)ε̂r] (3.8a)

N(E) ) 4 tr[(E- iε - H)-1εp(E+ iε - H)-1εr] (3.8b)

ε ) εr + εp (3.8c)

N(E) ) tr[P̂(E)] (3.9a)

P̂(E) ≡ 4ε̂r
1/2Ĝ(E)* ε̂pĜ(E)ε̂r

1/2 (3.9b)

N(E) ) ∑
k

pk(E) (3.10)

P̂(E) e 1 (3.11a)

0e pk(E) e 1 (3.11b)
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overall number of operations of the Greens function that are
required. (Another, very tantalizing, way to find the eigen
reaction probabilities is to determine the eigenvalues of the
matrix P̂(E)-1 ≡ 1/4ε̂r-1/2(E + iε̂ - Ĥ)ε̂p-1(E - iε̂ - Ĥ)ε̂r-1/2,
which are clearly the values{1/pk}. The operatorP̂(E)-1

requiresnoGreen’s function operators, but there are numerical

difficulties due to the reciprocals of the absorbing potentials
that occur in it. This approach does work,18,19 however, and
bears further consideration because so little effort is required
to construct the matrixP̂-1.)
Equations 3.8-3.10 thus provide a practical scheme for

determining the rate constant for a chemical reaction “directly”
and “correctly”. This is not a transition-state “theory” since
calculation of the Green’s function, the matrix inverse of (E +
iε - H), is equivalent to solving the Schro¨dinger equation; that
is, it generates the complete quantum dynamics. Since this is
required only in the transition-state region (between the reactant
and product absorbing strips), one may think of this quantum
mechanical calculation as the analogue of a classical trajectory
calculation which begins trajectories on a dividing surface in
the transition-state region and follows them for a short time to
see which ones are reactive.
Finally, it should be noted that Zhang and Light20 and

Manthe21 have recently described alternate ways of evaluating
eq 2.23 that are based on Fourier transforming a time-dependent
solution of the Schro¨dinger equation. This is an attractive
approach because it has the capability of determiningN(E) for
many different values ofE within one overall calculation.
b. Applications. In recent applications16-18 it has proved

useful to employ a set ofgrid pointsin coordinate space as the
basis set in which to evaluate eq 3.8b or eqs 3.9 and 3.10. These
grid, or discrete variable, methods22-24 are proving quite useful
for a variety of molecular quantum mechanical calculations. The
primary advantages of such approaches are that (1) no integrals
are required in order to construct the Hamiltonian matrix (e.g.,
the potential energy matrix is diagonal, the diagonal values being
the values of the potential energy function at the grid points),
and (2) the Hamiltonian matrix is extremely sparse (so that large
systems of linear equations can be solved efficiently).
Figure 1 shows the set of grid points and several possible

choices for the absorbing potentials which yield accurate
results16 for the standard test problem, the collinear H+ H2 f
H2 + H reaction. The important feature to see here is how
close the absorbing potentials can be brought in and how
localized the grid can be taken about the transition-state region.
This is the region in which it is necessary to determine the
quantum dynamics in order to obtain the correct result forN(E)
(and thusk(T)). No information about reactant and product
quantum states is involved in the calculation.
Figure 2 shows the eigen reaction probabilities{pk(E)}

obtained16a for the collinear H+ H2 f H2 + H reaction and
their sum,N(E). In this case about∼100-200 grid points are
needed to span the interaction region, and this is therefore the
dimension of all the matrices ofĤ, Ĝ(E), P̂(E), and so forth, in

Figure 1. Contour diagram of the potential energy surface for the
collinear H+ H2 f H2 + H reaction. The dashed lines are contours of
the absorbing potentialε(q) (which is zero in the interaction region)
for three different choices of it; they all work essentially equally well.
The points are the coordinate grid for the discrete variation representa-
tion of the Hamiltonian and other operators.

Figure 2. The cumulative reaction probabilityN(E) (solid line) and
the individual eigenvalues ofP̂ (dotted lines) as a function of energy
(in electronvolts) for the collinear H+ H2 reaction.
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the grid or discrete variable representation. As seen in Figure
2, though, the number of nonzero eigen reaction probabilitiessi.e.,
the rank ofP̂(E) and the number of Lanczos iterations required
to obtain these eigenvaluessis very small (e3) over this entire
region, and this is what makes the procedure described above
so efficient.
One can qualitatively identify the individual eigen reaction

probabilities in Figure 2 with the various states of the activated
complex of transition-state theory. In TST eachpk(E) would
rise from 0 to 1 at the energy of the corresponding state of the
activated complex (and stay at 1 for all higher energies); the
deviations from this behavior seen in Figure 2 are due to TST-
violating dynamics, i.e., recrossing trajectories in a classical
picture, and the result of a short-lived collision complex that
causes resonances in a quantum description.N(E) would be a
monotonically increasing function ofE if there were no
recrossing flux through the interaction region, and Figure 2
shows strong deviations from this behavior.
Figure 3a,b shows the corresponding eigen reaction prob-

abilities and CRP for the three-dimensional version16b of the H
+ H2 reaction (for total angular momentumJ ) 0). Even
though collision complexes are also formed in the three-
dimensional version of this reaction,N(E) appears in Figure 3b
to be monotonically increasing with energy in TST-like fashion;
thus monotonicity ofN(E) does not guarantee that the underlying
dynamics is TST-like. One also sees in Figure 3b a remnant
of the staircase structure25 in N(E) that results from quantization
of the states of the activated complex in TST; this survives
because the eigen reaction probabilities, at least at low energies,
are not overlapping; that is,p1(E) rises approximately from 0
to 1 beforep2(E) begins to turn on, and so forth.

Figure 4a,b shows the eigen reaction probabilities and CRP
for the first full dimensional calculation26 of the reaction
dynamics of any four-atom reaction, namely,

(There have subsequently been state-to-state reactive scattering
calculations27,28 for this reaction for some initial states, though
not a complete set of them that would be required to obtain the
CRP from eq 1.2.) The dynamics here is quite TST-like, as
seen from the eigen reaction probabilities in Figure 4a. Here,
moreover, one sees that the staircase structure inN(E) has
disappeared in Figure 4b. This is readily understood from
Figure 4a, because the higher density of states in this six degrees
of freedom system causes the eigen reaction probabilities to
overlap; that is,p1(E) has not fully turned on beforep2(E) begins
to turn on, and so forth. The net result is thatN(E) has a very
smooth “classical” TST look to it, although all of the tunneling
corrections, corner-cutting dynamics, and so on, are being
described exactly correctly.
The above examples all pertain to bimolecular reactions. A

unimolecular reaction of considerable interest is the isomeriza-
tion of ketene studied by Lovejoy and Moore,29

where C and C′ are12C and13C, respectively. Figure 5a shows
a schematic of the potential energy surface for the reaction,
indicating that the intermediate oxirene,

Figure 3. (a) Eigen reaction probabilities{pk(E)} for the three-
dimensional H+ H2 reaction (forJ) 0), as a function of total energy.
(b) The cumulative reaction probabilityN(E) ) ∑kpk(E).

Figure 4. (a) Eigen reaction probabilities{pk(E)} for the three-
dimensional H2 + OH f H2O + H reaction (forJ ) 0), as a function
of energy. (b) The cumulative reaction probabilityN(E) ) ∑kpk(E) for
this reaction.

H2 + OHf H + H2O (3.12)

H2C′dCdOT OdC′dCH2 (3.13)

C C

H

O

H
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is a local minimum on the PES. By very clever experimental
techniques Lovejoy and Moore were able to determine the
microcanonical ratek(E) for reaction 3.13 with very high energy
resolution and, quite remarkably, observed structure that they
interpreted as resonance tunneling via the intermediate meta-
stable states of oxirene. Calculations ofk(E) for this isomer-
ization were thus undertaken30 to lend support (or not) to this
interpretation of the observed structure. Absorbing potentials
(indicated by the dotted lines in Figure 5a) were located just
outside the transition-state regions connecting oxirene to the
two deep ketene potential minima. The isomerization dynamics
deals with flux from one absorbing region to the other and thus
avoids having to describe the highly excited vibrational motion
in the ketene wells themselves; this is somewhat analogous to
the procedure in a classical simulation of terminating the
trajectories once they are past the transition region.
Even with this limited treatment of the dynamics, however,

it is not possible to carry out the calculation in its full
dimensionality ofF ) 3N - 6 ) 9 degrees of freedom (with
total angular momentumJ ) 0). We thus carried out a CRP
calculation includingf degrees of freedom, yieldingNf(E), and
then folded in the other uncoupled degrees of freedom by
microcanonical convolution,

where{εn
F-f} are the energy levelssapproximated as harmonic

oscillatorssfor theF - f uncoupled degrees of freedom; that
is, n ) nf+1, ..., nF, and

This is the idea of “reduced dimensionality” approximations31

and for f ) 1 is the standard expression for one-dimensional
tunneling corrections to microcanonical transition-state theory.8

Figure 5b shows results30 obtained fork(E) via the methods
described above, compared to the experimental results29 (dotted
line). There is no pretense of being able to match up individual
structures between the twosthe potential energy surface is much
too uncertain for thissbut one does see that the structure
obtained in the theoretical calculations is quite comparable to
that seen experimentally, lending strong support to Lovejoy and
Moore’s interpretation.
Finally, it should be noted that the methodology described

in section IIIa for calculating the cumulative reaction probability
can be used for other physical processes than chemical reactions.
For the transmission of electrons through a complex medium,
for example,N(E) is proportional to the transmitted current (here
eq 1.2, withJ ≡ 0 and multiplied by some physical constants,
is known as the Landauer formula32), and Nitzan et al.33 have
recently using eqs 3.8, and so on, to compute the electron
tunneling current through ordered molecular layers. Similarly,
Peskin, Moiseyev, et al.34 have used this approach to calculate
the transmission properties of light in optical fibers which have
arbitrary (and strong) variation in their index of refraction
distribution.

IV. Canonical Case

If one has determinedN(E) over a sufficiently wide range of
energy, then the thermal (or canonical) rate constantk(T) is
readily obtainable over some range of temperaturesT via eq

1.3b. This may often be the preferred way to proceed, and it is
indeed true thatN(E) has more dynamical information in it than
k(T), and this can be useful for physical interpretations.
However, if one is interested in obtainingk(T) for one (or a
few) values ofT, then it is clearly desirable to be able to compute
k(T) directly for this value ofT. The methodology for doing
this is based on the expression fork(T) in terms of the flux
correlation function, eq 2.12.
a. Practical Implementation. The particular form of the

flux correlation function we currently find most useful is35

whereF̂(â) is the “Boltzmannized” flux operator,

The key to efficient evaluation of the above trace is identifying
some operator of low rank to exploit in a manner analogous to
what was done for the microcanonical case in eqs 3.9-3.11.
Here that operator isF̂(â), the rank (i.e., number of nonzero
eigenvalues) of which is effectively twice the number of states
of the activated complex that are thermally accessible at
temperatureT. A Lanczos iteration procedure is thus very
efficient for determining these eigenvalues{fn} and eigenvectors
{|Vn〉} of F̂(â). The trace in eq 4.1a is then carried out in this
representation, giving the following result for the flux correlation
function,35

N(E) ) ∑
n)0

∞

Nf(E- εn
F-f) (3.15a)

εn
F-f ) ∑

j)f+1

F

pωj(nj +
1

2) (3.15b)

Figure 5. (a) Sketch of the potential energy surface for ketene
isomerization, indicating the oxirene intermediate. The dotted lines
indicate the location of the absorbing potential for the calculation of
the isomerization rate. (b) Isomerization rate is a function of energy.
The dotted line is the experimental result of ref 29 (which cuts off at
the indicated energy for experimental reasons), and the solid line is
the reduced dimensional calculation, eq 3.15, using three active degrees
of freedom.

Cf(t) ) tr[F̂(â)eiĤt/pF̂e-iĤt/p] (4.1a)

F̂(â) ≡ e-âĤ/2F̂e-âĤ/2 (4.1b)

800 J. Phys. Chem. A, Vol. 102, No. 5, 1998 Miller



where{|Vn(t)〉} are the time-evolved eigenvectors,

Our group has used the split-operator algorithm to generate the
time evolution in eq 4.2b (and also the action of the Boltzmann
operator e-âĤ/2 in the Lanczos iteration ofF̂(â)), but other
methods of “wave packet propagation” could also be used.
At this point it should be noted that the above approach has

some features in common with important contributions that Light
et al.36 and Manthe et al.37 have independently made to the
efficient calculation ofk(T). Also related to these is earlier work
by Metiu et al.38 on calculating flux correlation functions where
the properties of the Boltzmannized flux operator were exploited.
The primary feature of the present methodology is that it
minimizes the number of actions of the time evolution operator
that are required. Note also the “conservation of effort” of this
canonical version of the methodology compared to the micro-
canonical version described in section IIIa: to evaluateCf(t)
via eq 4.2 requires the action of the time evolution operator
exp(-iĤt/p) on all eigenvectors|Vn〉 with nonzero eigenvalues
fn, and this is about twice the number of states of the activated
complex that are thermally accessible at temperatureT. The
microcanonical calculation ofN(E) via eqs 3.9-3.11 requires
two actions of the Green’s functionĜ(E) ≡ (E+ iε̂ - Ĥ)-1 for
each Lanczos iteration of operatorP̂(E) and the number of state
of the activated complex that areenergeticallyaccessible at
energyE. The canonical and microcanonical versions of the
methodology thus require comparable numbers of action of the
time evolution operator and Green’s function, respectively,
which are essentially the same degree of effort since they are
related as follows,

b. Applications. Figure 6 shows the flux correlation
function for the reaction39

for J ) 0 total angular momentum forT ) 300 °K and T )
1500 °K. The dynamics here is basically simple TST-like
barrier crossing dynamics, so the correlation function looks
qualitatively similar to the free-particle result, eq 2.16; for
example, it falls effectively to zero byt = pâ, which is 27 f for
T ) 300°K. At the higher temperature one does see the onset
of some non-TST dynamics, i.e., recrossing flux that is typical
at higher energies where some trajectories (in classical language)
have so much energy that they rebound back across the dividing
surface.
Figure 7 shows the results of a similar calculation (also for

J ) 0) for the reaction35

and here though the reaction dynamics is also “direct”si.e.,
the correlation function falls to∼0 in a time of∼pâsthere is
recrossing behavior inCf(t) due to the heavy+ light-heavy
nature of the kinematics in this reaction that is well-known to
cause recrossing of the transition-state dividing surface.
c. Treatment of J > 0. The applications discussed above

(including the microcanonical examples in section IIIb) have
all been for zero total angular momentum (J ) 0), which is the

simplest case since there are only 3N-6 coupled internal degrees
of freedom (N ) number of atoms of the complete molecular
system). TheJ> 0 calculation39 is more difficult because there
is an additional coupled degree of freedom, the component of
total angular momentum along a body-fixed axis, and the
number of states associated with this degree of freedom (the
K- or Ω-states) grows withJ as (2J + 1). Furthermore, one
must carry out the calculation for many values ofJ; that is, the
cumulative reaction probability and thermal rate constant are
given by

Cf(t) ) ∑
n

fn〈Vn(t)|F̂|Vn(t)〉 (4.2a)

|Vn(t)〉 ≡ e-iĤt/p|Vn〉 (4.2b)

Ĝ(E) ) (ip)-1∫0∞dt ei(E+iε̂-Ĥ)t/p (4.3)

Cl + H2 f HCl + H (4.4)

O+ HCl f OH+ Cl (4.5)

Figure 6. Flux-flux autocorrelation function for the Cl+ H2 f HCl
+ H reaction (in 3D,J ) 0) for (a)T ) 300°K and (b)T ) 1500°K.

Figure 7. Flux-flux autocorrelation function for the O+ HCl f OH
+ Cl reaction, forT ) 300 °K.
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where the calculation ofNJ(E) andkJ(T) is a separate calculation
of the type described above for eachJ. (The 2J + 1 factor in
eq 4.5 is from the sum overMJ, the projection quantum number
of total angular momentum onto a space-fixed axis, on which
the dynamics in field-free space does not depend.)
In reality the situation is not quite so bleak as suggested

above. First, though the body-fixed projection quantum number
K ranges from-J to +J, typically only small values ofK
contribute significantly to the rate constant, e.g.,-Kmax< K <
Kmax, even for largeJ, so that in practice the size of the basis
set does not continue to grow asJ increases. (This is particularly
true if the body-fixed quantization axis is chosen so that the
moment of inertia about it is assmall as possible.) Second,
the dependence ofkJ(T) (and analogouslyNJ(E)) on J is often
very simple and smoothswithin the “J-shifting approximation
(vide infra), for example, lnkJ(T) is a linear function ofJ(J +
1)sso that separate calculations for widely spaced values ofJ
can be carried out and then used to interpolate in order to carry
out the sum in eq 4.5.
Finally, there are simple approximations forJ> 0 that appear

often to be quite accurate. One of the most promising of these
a helicity-conserving approximation (HCA) based on the
instantaneous principle axes (PA) of the molecular system.
(McCurdy and Miller40 suggested this in an obscure publication,
and Qi and Bowman41 later came upon it independentlysterming
it the “adiabatic rotation” approximationsand have demon-
strated its usefulness and reliability in several different applica-
tions.) Here theJ > 0 Hamiltonian is that forJ ) 0 with the
addition of a generalized centrifugal potential,

whereErot
JK is the energy of a rigid molecule (whose geometry

is determined by the 3N-6 internal coordinatesq) within the
usual symmetric top approximation,

A, B, andC being the three rotation constants (e.g.,A ) p2/
2IA) related to the three instantaneous principle moments of
inertia of the complete molecular system. A calculation is thus
carried out for eachJ andK (which is also a conserved quantum
number within the HCA), a calculation equivalent in difficulty
to a J ) 0 calculation, and then

and similarly for the microcanonical use. Again, typically only
small values ofK are required,|K| e Kmax, and it is clear that
kJK(T) depends only on|K|.
The simplest approximation, the “J-shifting” approximation,31

corresponds to assuming that the rotation “constants” in eq 4.6b
are actually constant, evaluated at some reference geometry;
that is,

and so forth. The rotational energy is then simply a constant

term in the Hamiltonian (this is an example of the “reduced
dimensionality” approximation in eq 3.15 above), and for the
canonical case, for example, one has

where Qrot
q is the rotational partition function for a rigid

molecule with the reference geometry

If the reference geometry is linear, thenCq ) ∞ and eq 4.7b
thus includes onlyK ) 0; this is theextremecase where only
small values of|K| contribute. TheJ-shifting approximation,
therefore, requires only aJ ) 0 calculation, an enormous
simplification.
Figure 8a shows accurate calculations39 of kJ(T) for a range

of J values for the Cl+ H2 reaction discussed above, showing
that onceJ is larger than 3 or so, the dependence onJ is very
simple, of the form expected from the simpleJ-shifting
approximation (sinceCq ) 0 here). Figure 8b shows an
Arrhenius plot of the full rate constantk(T), compared to the

N(E) ) ∑
J)0
(2J+ 1)NJ(E) (4.5a)

k(T) ) ∑
J)0
(2J+ 1)kJ(T) (4.5b)

ĤJ ) ĤJ)0 + Erot
JK(q) (4.6a)

Erot
JK(q) ) 1

2
[A(q) + B(q)][J(J+ 1)- K2] + C(q)K2

(4.6b)

kJ(T) ) ∑
K

kJK(T) (4.6c)

A(q) f A(qq) ≡ Aq

Figure 8. (a) J-dependence ofkJ(T) for the Cl + H2 f HCl + H
reaction, for several temperatures. (b) Arrhenius plot of the full rate
constant (summed overJ, i.e., eq 4.5b): the solid line is the exact result
(i.e., with no approximation to the rotational motion), the triangles are
the result of the principle axis helicity conserving approximation (which
includes centrifugal distortion but not Coriolis coupling), and the dashed
line is the result of theJ-shifting approximation (i.e., an uncoupled
rigid rotor approximation).

k(T) ) kJ)0(T)Qrot
q (T) (4.7a)

Qrot
q (T) )

∑
J,K

exp{-â[12(Aq + Bq)(J(J+ 1)- K2) + CqK2]} (4.7b)
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result of the simpleJ-shifting approximation and also to the
HCA. The former is too small, presumably because onlyK )
0 is included,42 and it becomes progressively worse for higher
temperature, being a factor of∼2.6 too small atT ) 1500 K;
at 300 K it is∼30% too small. The HCA, however, is seen to
be quite satisfactory for the entire temperature range; this is
quite an encouraging state of affairs, because as discussed above,
the HCA requires calculations for only a relatively small number
of (J, K) values, each of which is essentially the effort of theJ
) 0 calculation.

V. Effects of Pressure

For many chemical applications, e.g., chemical reactions in
realistic combustion environments, the gas pressures are suf-
ficiently high that bimolecular rate constantssand almost always
unimolecular rate constantssare pressure-dependent. In the
Lindemann description of recombination reactions (and their
inverse, unimolecular dissociation), for example,

the pressure of the “bath” gas molecules M plays a central
role: the standard textbook expression43 for the rate of the
reaction A+ B f AB via the mechanism of eq 5.1 is

where{El} and{kl} are the energies and unimolecular decay
rates of metastable states of the AB* complex,ω ≡ [M] kdeactis
the frequency of “strong” (deactivating) collisions that stabilize
the complex (i.e.,kdeactis the bimolecular rate constant for the
second step of the mechanism, eq 5.1b, andω is thus
proportional to the pressure of the bath gas), andQr(T) is the
reactant partition function per unit volume.
Recently, however, it has been shown44 how the flux

correlation functions discussed above in sections II and IV can
be used to combine a completely rigorous quantum treatment
of the first step of the Lindemann reactant of eq 5.1a, i.e., the
A + B collision dynamics, with the strong collision model for
the deactivation step of eq 5.1b. (It is also possible to go beyond
the strong collision approximation,45 but this is considerably
more complicated.) The derivation proceeds very much along
the lines of that sketched in section IIa: referring to Figure 9a,
which indicates a dividing surface which defines the “complex”
AB* (inside of which a strong collision leads to recombination),
the rate constant for recombination is given by

whereCf(t) is the flux-flux autocorrelation function with respect
to this dividing surface. Not only is eq 5.3 more accurate then
eq 5.2 but it is less ambiguous. One does not have to extract
individual resonance energies and widths (i.e., decay rates) from
the A + B scattering matrix and decide what is a resonance
and what is not; eq 5.3 includes the contribution to recombina-
tion from direct (i.e., nonresonant) A+ B scattering as well as
the (usually more important) contribution from complex forma-
tion (i.e., scattering resonances). Equation 5.3 also has a clean
separation between the two steps of the Lindemann mecha-
nism: the flux correlation functionCf(t) is a property only of
the A + B scattering dynamics, eq 5.1a, while the factor e-ωt

deals with the collisional relaxation, eq 5.1b; e-ωt is the
probability ofnotexperiencing a strong collision between time
0 andt.
Qi and Bowman46 carried out the first calculation using this

theory, for the H+ COf HCO recombination, and Mandelsh-
tam et al.47 carried out similar calculations (though with the
time-independent version of the theory) for H+ O2 f HO2 at
energies below the threshold for the O+ OH channel.
More recently Germann and Miller48 have shown how the

above theoretical description of pressure effects can be general-
ized to include the effect of pressure on bimolecularreactiVe
processes, as well as recombination, with application to

Again, the derivation of the rate expressions follows the same
analysis as in section IIa. Referring to Figure 9b, the recom-
bination and reaction rates are given, respectiely, by

where the two flux correlation functions are

A + B T AB* (5.1a)

AB* + M f AB (5.1b)

k(T,ω) ) Qr(T)
-1∑

l

e-âElklω/(kl + ω) (5.2)

k(T,ω) ) Qr(T)
-1∫0∞dt Cf(t) e

-ωt (5.3)

Figure 9. (a) Sketch of a potential energy surface for the A+ B system
in eq 5.1.r ) a is the “dividing surface” for defining the flux, andε(r)
is the absorbing potential used for carrying out the quantum calculation.
(b) Sketch of the potential surface for the OH+ O f H + O2, HO2

reaction and recombination.s) sr ands) sp indicate the two dividing
surfaces, andεr andεp the parts of the absorbing potential in the reactant
and product regions.

O+ OH+ M f HO2 + M (5.4a)

f H + O2 + M (5.4b)

krecomb(T,ω) ) Qr(T)
-1∫0∞dt e-ωt[Crr(t) - Crp(t)] (5.5a)

kprr(T,ω) ) Qr(T)
-1∫0∞dt e-ωtCrp(t) (5.5b)

Crr(t) ) tr[F̂r(â)e
iĤt/pF̂re

-iĤt/p] (5.6a)

Crp(t) ) tr[F̂r(â)e
iĤt/pF̂pe

-iĤt/p] (5.6b)
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with

Crr(t) is the flux-flux autocorrelation, as before, for a dividing
surface located on the reactant side of the complex region (cf.
Figure 8a), andCrp(t) is the cross correlation function between
the flux operatorsF̂r and F̂p, the latter defined with respect to
a dividing surface on the product side of the complex region.
The physical interpretations of eq 5.5 are relatively transpar-

ent: reaction can only occur if flux gets from the reactant region
r to the product region p without suffering a collision with the
bath gas, because in the strong collision approximation a
collision with the bath gas relaxes the system and yields
recombined product. SinceCrp(t) is the probability of flux from
region r to region p in time t and e-ωt is the probability ofnot
having a collision with the bath gas in this time interval, eq
5.5b is obtained for the reaction rate. In eq 5.5a, the first term
∫0∞dt e-ωtCrr(t), is identified as the total loss rate of reactants,
the second term,∫0∞dt e-ωtCrp(t), the loss rate due to reaction,
and so their difference, eq 5.5a, is the rate of loss due to
recombination. (The collision-free (ω ≡ 0) reaction rate is the
time integral of either correlation function, so that theω ) 0
recombination rate is zero.)
Equation 5.5 is seen to have a very useful structure for

practical calculation: along the lines described in section IVa,
one first finds the eigenvalues and eigenvectors of the Boltz-
mannized flux operator of eq 5.6c. Each of these eigenvectors
is time-evolved, and then the expectation value of eitherF̂r or
F̂p is computed with these time-evolved vectors. With the same
time evolution one thus obtains both correlation functions in
eq 5.6 which are needed to construct the rate constants in eq
5.5.
Figure 10 shows these48 two correlation functions for reaction

5.4 (for J ) 0) at T ) 1200 K. The direct peak is barely
discernable inCrr(t) because at this temperaturepâ = 7 fs )
0.007 ps. The negative lobe ofCrr(t), extending to=0.5 ps, is
due to flux from the HO2 complex that decays back to reactants.
The cross correlation functionCrp(t) is zero for short times since
it takes some time to go from the reactant dividing surface to
the product one. The integrals of both of these correlation
functions are the same and give the collisionless (ω ) 0)
reaction rate, but it is readily apparent that it is easier to obtain
theω ) 0 reaction rate by computing the integral ofCrp(t) rather
than Crr(t), so as not to have to deal with the cancellation
between the positive short-time direct contribution and the
negative long-time recrossing contribution in the latter correla-
tion function. (Metiu et al.49 have earlier also found it useful
for other purposes to use a cross correlation function rather than
the autocorrelation function.)
Because of the importance50 of reaction 5.4 in modeling

combustion, it is useful to note some interesting dynamical
features of even the zero pressure (ω ) 0) bimolecular reaction.
If one were to apply ordinary TST, the best choice for the
dividing surface would be atsr in Figure 9b, and then the flux
autocorrelation functionCrr(t) noted above, and seen in Figure
8b, is the correlation functionCf(t) discussed in section IV. The
area under the short-time positive peak ofCrr(t) is the incident
flux through this surface from the reactant region, and the area
under the negative lobe is the part of it that recrosses this
dividing surface and goes back to reactants. By computing these
areas separately, one finds that∼69% of the incident flux
recrosses the dividing surface; that is, the “transmission coef-
ficient” (the correction factor by which one must multiply the

TST rate constant to obtain the correct result) is=0.31. This
is actually quite surprising, because astatisticalapproximation51

predicts essentially no recrossing flux for the reaction in the
exothermic direction, O+ OH f O2 + H. The fact that there
is so much recrossing flux is presumably due to the inefficient
coupling between the O-O motion (the incident reaction
coordinate) and the light atom H-O2 motion (the exit reaction
coordinate). Interestingly, classical trajectory calculations
show52 approximately this same degree of recrossing flux (i.e.,
small transmission coefficient).
Finally, Figure 11 shows48 the pressure dependence of the

rate constants for reaction (OH+ O f H + O2) and
recombination (OH+ O f HO2) for a low temperature (500
K, solid lines) and a high temperature (2000 K, dotted lines).
(Figures 11a,b are the same results, with a log and linear scale
for the abscissa, respectively, to emphasize different regions of
pressure.) The reaction rate is essentially independent of
pressure until very high pressure (g100 atm), and up to this
same region of pressure the recombination rate has the typical
low-pressure limiting form, i.e., linear in the pressure of the
bath gas.

VI. Concluding Remarks

The methodologies described in sections III and IV give one
the possibility of carrying out accurate quantum calculations
for the rate constants of simple chemical reactions (given, of
course, an accurate potential energy surface, which still remains
a practical limitation to widespread applications). The micro-
canonical and canonical versions of the theory are each useful
for various applications. For unimolecular reactions (e.g., the
ketene isomerization discussed in section III) one is specifically
interested in the energy dependence ofk(E), while for bimo-

F̂r(â)e
-âĤ/2F̂re

-âĤ/2 (5.6c)

Figure 10. Flux-flux correlation functionsCrr(t) (top panel) andCrp-
(t) (bottom panel) for the OH+ O f H + O2 reaction atT ) 1200
°K. Both correlation functions are shown relative to the reactant flux
autocorrelation function at zero time,Crr(0).
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lecular reactions one typically wants onlyk(T) (unlessN(E) is
desired for interpretational purposes). The microcanonical and
canonical approaches focus on the operatorsĜε(E) and exp[-
iĤt/p], respectively, but these are essentially the same thing (cf.
eq 4.3) and thus entail essentially the same computational effort.
Nevertheless the organization of the calculation is often different
and more efficient depending on which version of the theory is
employed. Methodological advances are thus still taking place.
At best, however, full-blown quantum calculations of the type

described above will remain limited to small molecular systems
(though “small” may be gradually redefined upward as computer
hardware progresses), so that one is always interested in useful
approximations that can make the approaches applicable to
larger chemical systems. One such approximation of this type
was mentioned in section IIb with regard to the ketene
isomerization, cf. eqs 3.15, a “reduced dimensionality” ap-
proximation of the type advocated by Bowman31 and his co-
workers; theJ-shifting approximation of section IVc is also of
this type. Here one simply assumes that some (perhaps large
number of) degrees of freedom are uncoupled from the primary
set of degrees of freedom included in the quantum calculation.
The uncoupled degrees of freedom are included in the state-
counting (which is a convolution structure in the microcanonical
case and a multiplicative factor in the canonical case) but not
dynamically.
A more accurate way to treat a small primary “system” that

is to be described by accurate quantum dynamics, coupled to a
secondary “bath” that is treated more approximately, is to
include coupling between the two in aaVeragemanner, e.g.,

the time-dependent self-consistent-field (TD-SCF) approxima-
tion.53 If one furthermore treats the bath degrees of freedom
in the classical limit, then the popular “mixed quantum-
classical” Ehrenfest model54 results, whereby one integrates the
time-dependent Schro¨dinger equation for the quantum degrees
of freedom simultaneously with classical equations of motions
for the classical degrees of freedom. Metiu et al.55 have in fact
implemented a version of this approach for calculating the flux
autocorrelation function, applied to H atom motion on metal
surfaces, where the H atom is treated quantum mechanically
and the surface motion classically. The methodology of section
IVa makes this even more efficient: Wang et al.56 have recently
carried out such a calculation for a (quantum) double-well
potential coupled to several hundred (classical) harmonic
oscillator (bath) degrees of freedom, obtaining quite reasonable
agreement with Topaler and Makri’s57 accurate (fully quantum)
path integral simulations for this system. It is also clear that
the “bath” in this approach can have a variety of physical mani-
festations: a liquid solvent, a cluster environment, or a
surrounding protein. This thus allows one to combine the
rigorous quantum treatments described in this paper for the
primary molecular system with classical molecular dynamics
simulations of a complex environment.
Other variations on the above theme are possible. One could

treat the quantum degrees of freedom above within asemiclas-
sicalapproximation rather than fully quantum mechanically, and
this would be the “mixed semiclassical-classical” model
recently described by Sun and Miller.58 Better than this would
be to treatall the degrees of freedom semiclassically (if this is
possible), e.g., theinitial Value representation(IVR)59 of the
semiclassical approximation that is currently receiving a great
deal of attention. In the Herman-Kluk59f (coherent state)
version of the IVR, for example, the time evolution operator is
given by an average over the phase space of initial conditions
for classical trajectories,

where |p,q〉 is a coherent state, i.e., the state whose wave
function is a minimum uncertainty (Gaussian) wave packet,

pt ≡ pt(p1,q1) and qt ≡ qt(p1,q1) are the (classically) time-
evolved phase space variables,St(p1,q1) is the classical action
along the trajectory with these initial conditions, and the
preexponential factorCt(p1,q1) is the determinant of a particular
linear combination of elements of the monodromy matrix,

This and other variations of the IVR approach can thus readily
be used in the quantum expressions of section III and IV to
generate semiclassical approximations forCf(t) andN(E), and
the development of these approaches is a matter of ongoing
research. It has also been recently shown60,61 how this
semiclassical IVR approximation can be generalized to include
electronic degrees of freedom in a dynamically consistent way
with the dynamics of nuclear motion, so that one can use the
approach to describe electronically nonadiabatic processes in
chemical reactions.

Figure 11. Pressure dependence of the reaction and recombination
rates forT ) 500 °K andT ) 2000°K. (The upper and lower panels
show the same results, with a logarithmic and linear pressure scale,
respectively, to emphasize the different regions of pressure.)

e-iĤt/p )
∫dp1∫dq1
(2πp)F

Ct(p1,q1)e
iSt(p1,q1)/p|pt,qt〉〈p1,q1| (6.1a)

〈x|p,q〉 ) (γπ)
F/4
e-(γ/2)|x-q|2e(i/p)p‚(x-q) (6.1b)

Ct(p1,q1) )

det
1
2[∂qt/∂q1 + ∂pt/∂p1 - ipγ ∂qt/∂p1 - 1

ipγ
∂pt/∂q1] (6.1c)

Feature Article J. Phys. Chem. A, Vol. 102, No. 5, 1998805



Acknowledgment. This work has been supported by the
Director, Office of Energy Research, Office of Basic Energy
Sciences, Chemical Sciences Division, of the U.S. Department
of Energy under Contract No. DE-AC03-76SF00098 and also
by the National Science Foundation under Grant No. CHE94-
22559.

References and Notes

(1) See, for example: Miller, W. H.J. Chem. Phys.1969, 50, 407.
(2) (a) Miller, W. H.; Jansen op de Haar, B. M. D. D.J. Chem. Phys.

1987, 86, 6213. (b) Zhang, J. Z. H.; Chu, S. I.; Miller, W. H.J. Chem.
Phys.1988, 88, 6233. (c) Zhang, J. Z. H.; Miller, W. H.Chem. Phys. Lett.
1988, 153, 465;1989, 159, 130;J. Chem. Phys.1989, 91, 1528. (d) Mielke,
S. L.; Truhlar, D. G.; Schwenke, D. W.J. Chem. Phys.1991, 95, 5930;J.
Phys. Chem.1994, 98, 1053.

(3) (a) Kuppermann, A.J. Phys. Chem.1996, 100, 2621. (b) Schatz,
G. C. J. Phys. Chem.1996, 100, 12839. (c) Pack, R. T.; Butcher, E. A.;
Parker, G. A. J. Chem. Phys.1995, 102, 5998. (d) Castillo, J. F.;
Manolopoulos, D. E.; Stark, K.; Werner, H. J.J. Chem. Phys.1996, 104,
6531. (e) Launay, J. M.; LeDourneauf, M.Chem. Phys. Lett. 1990, 169,
473.

(4) Miller, W. H. J. Chem. Phys.1975, 62, 1899.
(5) Some reviews of earlier stages of this topic are: (a) Miller, W. H.

Acc. Chem. Res. 1993, 26, 174. (b) Miller, W. H. InNew Trends in Reaction
Rate Theory; Talkner, P., Ha¨nggi, P., Eds.; Kluwer Academic Pub.:
Dordrecht, 1995; pp 225-246. (c) Miller, W. H. InProceedings of the
Robert A. Welch Foundation, 38th Conference on Chemical Research,
Chemical Dynamics of Transient Species; Robert A. Welch Foundation:
Houston, TX, 1994; pp 17-27. (d) Miller, W. H. InDynamics of Molecules
and Chemical Reactions; Zhang, J., Wyatt, R., Eds.; Marcel Dekker: New
York, 1995; pp 387-410. (e) Miller, W. H.AdV. Chem. Phys.1997, 101,
853.

(6) Miller, W. H. J. Chem. Phys.1974, 61, 1823.
(7) For modern discussions of transition state theory see: (a) Pechukas,

P. InDynamics of Molecular Collisions, Part B; Miller, W. H., Ed.; (Vol.
2 of Modern Theoretical Chemistry); Plenum: New York, 1976; Chapter
6. (b) Miller, W. H. Acc. Chem. Res. 1976, 9, 306. (c) Truhlar, D. G.;
Hase, W. L.; Hynes, J. T.J. Phys. Chem.1983, 87, 2664.

(8) (a) Pechukas, P.; McLafferty, F. J.J. Chem. Phys.1973, 58, 1622.
(b) Pechukas, P.; McLafferty, F. J.Chem. Phys. Lett. 1974, 27, 511.

(9) (a) Chapman, S.; Garrett, B. C.; Miller, W. H.J. Chem. Phys.1975,
63, 2710. (b) Miller, W. H.Faraday Discuss. Chem. Soc. 1977, 62, 40. (c)
Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willetts, A.
Chem. Phys. Lett. 1990, 172, 62.

(10) Miller, W. H.; Schwartz, S. D.; Tromp, J. W.J. Chem. Phys.1983,
79, 4889.

(11) (a) Yamashita, K.; Miller, W. H.J. Chem. Phys.1985, 82, 5475.
(b) Thirumalai, D.; Berne, B. J.J. Chem. Phys.1983, 79, 5029.

(12) Yamamoto, T.J. Chem. Phys.1960, 33, 281.
(13) Kubo, R.; Yokota, M.; Nakajima, S.J. Phys. Soc. Jpn.1957, 12,

1203.
(14) Voth, G. A.; Chandler, D.; Miller, W. H.J. Phys. Chem.1989, 93,

7009.
(15) Thirumalai, D.; Garrett, B.; Berne, B. J.J. Chem. Phys.1985, 83,

2972.
(16) (a) Seideman, T.; Miller, W. H.J. Chem. Phys.1992, 96, 4412.

(b) Seideman, T.; Miller, W. H.J. Chem. Phys.1992, 97, 2499.
(17) (a) Goldberg, A.; Shore, B. W.J. Phys. B1978, 11, 3339. (b)

Leforestier, C.; Wyatt, R. E.J. Chem. Phys.1983, 78, 2334. (c) Kosloff,
R.; Kosloff, D. J. Comput. Phys.1986, 63, 363. (d) Neuhauser, D.; Baer,
M. J. Chem. Phys.1989, 90, 4351.

(18) Manthe, U.; Miller, W. H.J. Chem. Phys.1993, 99, 3411.
(19) Wu, X. T.; Hayes, E. F.J. Chem. Phys.1997, 130, 136.
(20) Zhang, D. H.; Light, J. C.J. Chem. Phys.1996, 104, 6184;1997,

106, 551.
(21) Manthe, U. Private communication.
(22) Harris, D. O.; Engerholm, G. G.; Gwinn, W. D.J. Chem. Phys.

1965, 43, 1515.
(23) (a) Lill, J. V.; Parker, G. A.; Light, J. C.Chem. Phys. Lett. 1982,

89, 483. (b) Light, J. C.; Hamilton, I. P.; Lill, J. V.J. Chem. Phys.1985,

82, 1400. (c) Lill, J. V.; Parker, G. A.; Light, J. C.J. Chem. Phys.1986,
85, 900. (d) Bacic, Z.; Light, J. C.J. Chem. Phys.1986, 85, 4594. (e)
Whitnell, R. M.; Light, J. C.J. Chem. Phys.1988, 89, 3674. (f) Choi, S.
E.; Light, J. C.J. Chem. Phys.1990, 92, 2129.

(24) Colbert, D. T.; Miller, W. H.J. Chem. Phys.1992, 96, 1982.
(25) Chatfield, D. C.; Friedman, R. S.; Truhlar, D. G.; Garrett, B. C.;

Schwenke, D. W.J. Am. Chem. Soc.1991, 113, 486.
(26) (a) Manthe, U.; Seideman, T.; Miller, W. H.J. Chem. Phys.1993,

99, 10078. (b) Manthe, U.; Seideman, T.; Miller, W. H.J. Chem. Phys.
1994, 101, 4759.

(27) Dai, J.; Zhu, W.; Zhang, J. Z. H.J. Phys. Chem.1996, 100, 13901.
(28) Zhang, D. H.; Light, J. C.J. Chem. Phys.1996, 104, 4544.
(29) Lovejoy, E. R.; Moore, C. B.J. Chem. Phys.1993, 98, 7846.
(30) Gezelter, J. D.; Miller, W. H.J. Chem. Phys.1995, 103, 7868.
(31) Bowman, J. M.J. Phys. Chem.1991, 95, 4960.
(32) Landauer, R.Philos. Mag. 1970, 21, 863.
(33) Benjamin, I.; Evans, D.; Nitzan, A.J. Chem. Phys.1997, 106, 1291.
(34) Vorobeichik, I.; Peskin, U.; Neuhauser, D.; Orenstein, M.; Moi-

seyev, N.J. Quant. Elec.1997, 33, 1236.
(35) Thompson, W. H.; Miller, W. H.J. Chem. Phys.1997, 106, 142;

Erratum1997, 107, 2164.
(36) (a) Park, T. J.; Light, J. C.J. Chem. Phys.1986, 85, 5870. (b)

Park, T. J.; Light, J. C.J. Chem. Phys.1988, 88, 4897. (c) Park, T. J.;
Light, J. C.J. Chem. Phys.1989, 91, 974. (d) Park, T. J.; Light, J. C.J.
Chem. Phys.1991, 94, 2946. (e) Park, T. J.; Light, J. C.J. Chem. Phys.
1992, 96, 8853. (f) Brown, D.; Light, J. C.J. Chem. Phys.1992, 97, 5465.

(37) (a) Manthe, U.J. Chem. Phys.1995, 102, 9205. (b) Matzkies, F.
Manthe, U.J. Chem. Phys.1997, 106, 2646. (c) Matzkies, F.; Manthe, U.
J. Chem. Phys., in press.

(38) Wahnstro¨m, G.; Metiu, H.Chem. Phys. Lett. 1987, 134, 531.
(39) Wang, H.; Thompson, W. H.; Miller, W. H.J. Chem. Phys.1997,

107, 7194.
(40) McCurdy, C. W.; Miller, W. H. InState-to-State Chemistry; Brooks,

P. R., Hayes, E. F., Eds.; ACS Symp. Ser. 56; 1977; p 239.
(41) (a) Bowman, J. M.Chem. Phys. Lett. 1994, 217 36. (b) Qi, J.;

Bowman, J. M.J. Chem. Phys.1996, 1059884.
(42) Sun, Q.; Bowman, J. M.; Schatz, G. C.; Sharp, J. R.; Connor, J. N.

L. J. Chem. Phys.1990, 92, 1677.
(43) For example, Gilbert, R. G.; Smith, S. C. InTheory of Unimolecular

and Recombination Reactions; Blackwell: Oxford, 1990.
(44) Miller, W. H. J. Phys. Chem.1995, 99, 12387.
(45) Miller, W. H. Faraday Discuss. 1995, 102, 53.
(46) Qi, J.; Bowman, J. M.J. Phys. Chem.1996, 100, 15165.
(47) Mandelshtam, V. A.; Taylor, H. S.; Miller, W. H.J. Chem. Phys.

1996, 105, 496.
(48) Germann, T. C.; Miller, W. H.J. Phys. Chem.1997, 101, 6358.
(49) Wahnstro¨m, G.; Haug, K.; Metiu, H.Chem. Phys. Lett. 1988, 148,

158; J. Chem. Phys.1989, 90, 540.
(50) Miller, J. A.; Kee, R. J.; Westbrook, C. K.Annu. ReV. Phys. Chem.

1990, 41, 345.
(51) Duchovic, R. J.; Pettigrew, J. D.; Welling, B.; Shipchandler, T.J.

Chem. Phys.1996, 105, 10367.
(52) Miller, J. A.; Garrett, B. C.Int. J. Chem. Kinet. 1997, 29, 275.
(53) See for example: Gerber, R. B.; Buch, V.; Ratner, M. A.J. Chem.

Phys.1982, 77, 3022.
(54) See, for example: Billing, G. D.Chem. Phys. Lett. 1975, 30, 391;

J. Chem. Phys.1976, 64, 908.
(55) Wahnstro¨m, G.; Carmeli, B.; Metiu, H.J. Chem. Phys.1988, 88,

2478.
(56) Wang, H.; Sun, S.; Miller, W. H.Chem. Phys. Lett., in press.
(57) Topaler, M.; Makri, N.J. Chem. Phys.1994, 101, 7500.
(58) Sun, X.; Miller, W. H.J. Chem. Phys.1997, 106, 916.
(59) (a) Miller, W. H.J. Chem. Phys.1970, 53, 3578. (b) Heller, E. J.

J. Chem. Phys.1991, 94, 2723. (c) Miller, W. H.J. Chem. Phys.1991, 95,
9428. (d) Heller, E. J.J. Chem. Phys.1991, 95, 9431. (e) Kay, K. G.J.
Chem. Phys.1997, 107, 2313. (f) Herman, M. F.; Kluk, E.Chem. Phys.
1984, 91, 27. (g) Campolieti, G.; Brumer, P.J. Chem. Phys.1992, 96, 5969.

(60) Sun, X.; Miller, W. H.J. Chem. Phys.1997, 106, 6346.
(61) Stock, G.; Thoss, M.Phys. ReV. Lett. 1997, 78, 578.

806 J. Phys. Chem. A, Vol. 102, No. 5, 1998 Miller


