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Theoretical approaches for calculating rate constants of chemical reactitiner the microcanonical rate

for a given total energi(E) or the canonical rate for a given temperatlf€—are described that are both
“direct”, i.e., bypass the necessity of having to solve the complete state-to-state quantum reactive scattering
problem, yet also “correct”, i.e., in principle exact (given a potential energy surface, assuming nonrelativistic
quantum mechanics, etc.) Applications to a variety of reactions are presented to illustrate the methodology
for various dynamical situations, e.g., transition-state-theory-like dynamics where the system moves directly
through the interaction (transition-state) region and reactions that form long-lived collision complexes. It is
also shown how this rigorous quantum theory can be combined with the Lindemann mechanism for describing
the effects of collisions with a bath gas, so as to be able to treat recombination reactions and other effects of
pressure. Finally, several ways are discussed for combining these rigorous approaches for small molecule
dynamics with an approximate treatment of (perhaps many) other degrees of freedom (i.e., a solvent, a substrate,
a cluster environment) that may be coupled to it.

I. Introduction projection of total angular momentum onto the relative velocity

If one wishes to describe a bimolecular chemical reaction at VECtor of the reactants (products), anfi ) is the Wigner

the most detailed level possible, i.e., its state-to-state differential 0tation matrix. A number of such state-to-state quantum
scattering cross section, then it is necessary to solve thel€active scattering calculations have actually been carried out

Schrainger equation (with scattering boundary conditions) to for simple reactions, mostly using time-independent scattering

obtain theS-matrix { Sy, n(E,J)} as a function of total energs methodology based on tf®matrix Kohn variational approagh
and total angular momentud in terms of which the cross  or coupled channel methods utilizing hyperspherical coordi-
sections can be calculated as follotvs: nates’ these include H or D+ Hy(para)— Hx(ortho) or HD+
H,F+H,—HF+H, Cl+ H,—HCI+H, O+ HCI— OH
Oy (0.E) = +Cl,O+ Hy— OH + H, and H+ O, — OH + O.
0oy—1 2 In the vast majority of chemical applications, however, one
|(2|k”r) Z(ZJ 1) (ﬁ“vm(e) Shp’"r(E"])' (1.1) needs only theate constanfor the reaction, either canonical

(i.e, characterized by a temperattfgk(T), or microcanonical
Here n, (ny) labels the reactant (product) rotational and (characterized by the total energy, k(E); k(T) is usually the
vibrational statesf is the scattering angle between the relative quantity of interest for bimolecular reactions, ak(E) for
velocity vectors of reactants and products, (m,) is the unimolecular reactions. These rate constants are appropriate
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averages of the above cross sections and thus are readilyand applications of the microcanonical and canonical versions
available if a complete scattering calculation has been carried of the theory, respectively. Section V shows how the effects
out to obtain thes-matrix. The result of this averaging process of pressure(within the Lindemann picture) on bimolecular

is contained very simply in theumulatve reaction probability reactions can be included in this rigorous formulation, and
(CRP)N(E), which is defined &s section VI concludes by discussing some approximations that

) can be implemented within this overall formulation.
NE) = 3 @1+ D)3 IS, (E) (1.2)

Np,N, . .
o Il. Survey of Basic Formulation

and in terms of which the microcanonical and canonical rate

constant(E) andk(T) are given by a. Classical Mechanics. It is useful first to consider the

“direct” and “correct” way of calculating a rate constant within
K(E) = [2ﬂhpr(E)]71N(E) (1.3a) classical mechar_n(_:s_A rate constant is an average of tiex
through some dividing surface that separates reactants from

K(T) = [2 nhQr(T)]—l f_wde e—ﬁEN(E) (1.3b) products. Thus the canonical rate constant is given by

wheref = (kT)71, p; is the density of reactant states per unit keo(T) =

energy, and); is the reactant partition function per unit volume. -1 -F ~BH(P1.q)
The situation, therefore, is that if one has carried out a QM) ~(2h) fdplqule F(P2.0y) P(p2a)
complete reactive scattering calculation and obtainedShe (2.1)

matrix, then everything about the reaction (in field-free space)

is available, from the most detailed state-specific cross sectionswhere p1,q;) denotes the initial conditions of the momenta and
via eq 1.1 to the most averaged quantities, the rate constantsoordinates for classical trajectories of the molecular system
via egs 1.2 and 1.3 (or anything in between). However, if itis (consisting ofF degrees of freedom, whose classical Hamilton
only the rate constants that are desired, then it clearly seemsisH(p,q)). F is the flux factor, which is the rate that trajectories

inefficient to have to obtain the compleSematrix, with all its cross the dividing surface specified by the equation
state-to-state information, and then average this out in construct-
ing the CRP via eq 1.2. One thus seekdlieect way of sq) =0 (2.2)

calculatingN(E) (or k(T) itself), i.e., one that avoids having to
obtain theS-matrix, yet one that is alsoorrect i.e., without
any inherent approximations. In applications to complex

chemical reactions it will of course often be necessary to make g : ;
approximations, but one would at least like to begin with a Surface and positive on the product side nfight be one of
formulation that is free of them. To the extent that such an the coordinatesthe “reaction coordinate*but it is not neces-

approach is possible, it is also reasonable to expect that oneSa"Y 0 choose the coordinatgsn this way.) F is then given
will be able to apply it to more complex reactions than those PY

for which a complete reactive scattering calculation can be

carried out, simply because one is seeking less detailed _d

information about the reaction dynamics. F(p.a) dth(s(q)) (2.32)

For examples(q) is some function of the coordinates of the
system that is negative, say, on the reactant side of the dividing

The purpose of this paper is to survey the methodology and s
recent applications of this “direct” and “correct” way of = 4(s(q))=—="q(t) (2.3b)
calculating reaction rate constaftsMy own work in this 9q
general area beg#nn trying to formulate a more rigorous _ 0S
guantum mechanical version of transition-state theory (TST). o 5(s(q))a-p/m (2.30)
This was motivated by insightful work of Pechukas and
McLafferty® which showed that, within the realm of classical
mechanics, TST is actually an exact theory at sufficiently low
energy. Low energy, of course, is the region most important
for determining thermal rate constants, but at low energy h(¢) =
guantum effects are expected to be significant, hence the desire
for a rigorousquantumanalogue of classical TST. Although
this quest has had some useful byproducts (e.g., semiclassical hat is,h(s(q)) is the “microprobability” that the coordinatg
versions of TST,including the “instanton” approximatidithat lies on the product side of the dividing surface, and in eq 2.3c
has seen wide use), nothing emerged that one can properly calit has been assumed for simplicity that the coordinates are
a rigorous quantum TST. The methodologies described in the cartesian so thay = p/m (but this can be generalized with no
present paper are, strictly speaking, simply quargimulations essential changes). The fact®y in eq 2.1 contains all the
yet it will be seen that in appropriate cases, e.g., simple barrier dynamical information: it is, in words, equal to 1 if the trajectory
crossing dynamics, qualitative vestiges of TST reemerge andwith these initial conditions is on the product side of the dividing
provide a very useful interpretation even in these rigorous surface in the infinite future and 0 otherwise; this can be stated
computational approaches. In the case of more complicatedalgebraically as
dynamics, e.g., involving formation of a long-lived collision
interme_diatg, when TST is not an appropriate dynamical P,(p,,0,) = lim h[s(q(t))] (2.5)
approximation, these rigorous approaches of course still apply. oo

Section Il first sketches the basic theoretical formulation, and
then sections lll and IV deal with the practical implementation whereq(t) = q(t; p1,q1), or equivalently as

whereh() is the Heaviside function,

1if &>0

0if £<0 (2.4)
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P, = JyShls(a()] (2.6a)
= [ dt ol e-a0 (2.6b)
= [, dt F(p(t).a(t) (2.6¢)

Thus P((p1,q1), the probability that the trajectory with the
indicated initial conditions lies on the product side of the
dividing surface a$ — oo, is given by the time integral of the
time-evolved flux along the trajectory. Inserting eq 2.6c¢ into

2.1, and interchanging the order of the phase space and time

integrals, gives

ke(M = QM) f7dt C() (2.7a)

where

C(t) = (27h) © [dp, [da, e "W F(p,,a,) F(p(t),a(t)
(2.7b)

That is, the rate constant is the time integral of the ftflux
autocorrelation function.

Equation 2.7 is the desired “direct” and “correct” way of
calculating the thermal rate constant classically. It is “correct”
because it is based on the full classical dynamics (a trajectory
calculation), and no approximations are entailed in going from
eq 2.1to 2.7. ltis “direct” because it requires only dynamical
information about whether or not the trajectory lies on the
product side of the dividing surface &s— o; it requires no
information about the product state distribution, and so forth.
It therefore typically requires only short time dynamics to
evaluate eq 2.7, provided the dividing surface is chosen at the
most useful location. (Because of Liouville’s theorem, the result
for k(T) is independent of the location of the dividing surface,
although the correlation functio@s(t) is not.)

TST, as Pechukas and McLaffettgmphasize, is exact
classically if all trajectories that start out on the dividing surface
att = 0 never recross it at a later time. If this is the case, then
F(p(),q(t)) = o(s(t))s(t) will be identically zero for allt > 0
(becauses(t) will never be zero if the trajectory never returns
to the dividing surface), so th&(t) = 0 for allt > 0. To see
the behavior ofCi(t) for t very close to 0, one makes a short-
time approximation for the trajectory,

P1
q(0) =, +
p(t) = p,

and if for convenience one chooses coordinates sos{hat=
gr is the reaction coordinate, then it is not a lengthy calculation
to show that eq 2.7b for the correlation function gives
KT
Ci(t) =1 Q"M o(t)/2 (2.8a)

whereQ*(T) is the partition function of the “activated complex”,
the molecular system minus ti¢h degree of freedom,

QM = (2ah)y ™ fap’ [dg ™D (2.8h)

where ¢',9) = (P, k=1, ...,F — 1, andH¥(p',q") = p'¥
2m + V(q',ge = 0). Thus in the limit of TST-like dynamics
(no recrossing trajectories) the flux correlation function falls to
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zerovery quickly, and its integral (eq 2.7a) gives the conven-
tional TST result for the rate constant

kTQ'(M)
h Q(T)

b. Quantum Mechanics. The reason it is worthwhile to
describe the classical situation in as much detail as above is
that the quantum treatment follows it very closely. Thus ref 6
showed that the quantum expression for the rate consant
i.e., egs 1.2 and 1.3, can be cast in a form analogous to the
classical expression eq 2.1,

kou(T) = QM) * tr(e "EP))

whereH, F, and P, are quantum operators analogous to the
classical functions in egs 2.1, with a quantum trace replacing
the classical phase space average in the usual way. Analogous
to eq 2.5, for example, the operayris the long-time limit of

the time-evolved Heaviside function,

ke 1s(T) = (2.8¢)

(2.9)

P, = lim &""h(ge"™"" (2.10)

but now the time evolution is carried out quantum mechanically
in terms of the time evolution operator expHt/h) by the usual
Heisenberg prescription. One can also perform the same
manipulations as in eq 2.6,

p = Lwdt%é':'"hﬁ(s)e_":mh (2.10a)
_ ﬁ)wdt eiﬂt/h%[ﬂ’ﬁ]e—iﬂﬂh

(2.10b)

= [t dMhFe R (2.10c)

That is, the projection operatdt; is the time integral of the
guantum mechanically time-evolved flux operator,

(2.11a)

S . , ~ 0S
— + -—
aq p+p aq
where eqg 2.11b has assumed a Cartesian Hamiltonian. Inserting
eq 2.10c into 2.9, and interchanging the order of the trace and
the time integral, gives the same result of eq 2.7a,

kon(T) = QM) [ dt Ci(t)

but where hereé(t) is the quantum flux-flux autocorrelation
function©

T .
= olo(s(@) () (2.11b)

(2.12a)

C,(t) = trje PHEd UEe MUY (2.12b)

Here | make a technical/historical digression on the operator
e PHF appearing in eq 2.12b; the uninterested reader may skip
this paragraph. Miller, Schwartz, and Tromp (M$T)ointed
out that the rate constant given by eq 2.12a is unchanged if the
Boltzmann operator is split and sandwiched aldoas follows,

e PR — g g -MH (2.13)

for any value ofi between 0 an. They made the symmetrical
choice A = /2 so that the Boltzmann operator could be
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combined with the time evolution operators into one “complex
time” evolution operator as follows,
CMST(t) = tr[Fe /e MM (2.14)
wheret; =t — ihf/2. This was particularly useful in trying to
computeCx(t) by analytic continuation methods. Earlier work
by Yamamotd? using linear response theotyalso expressed
the rate constant in terms of a flaflux autocorrelation function,

and his correlation function correspondsateeragingeq 2.13
over A (the Kubo transform),

A 1B, IR —(B—N)F
€ PF)\ipo = Bj‘; dl e ™Fe ¥ (2.15a)
which can be shown to B¢
e

€ Plkupo = (2.15b)

P
@[h,

Miller

SO dEeFOE-H) = (2.21)
it is easy to see that this definition BE), and eq 1.3b giving
k(T) in terms of N(E), immediately recovers the quantum
expression fok(T) in eq 2.9.

By using eq 2.10c for the projection operatey, a very
interesting expression can be obtained NYE),

N(E) = (Znh)% [ dtt[o(E — F)FEMMFe M (2.224)

where the time integral has been changed from )@y (—,)
(and divided by 2) since the integrand is an even function of
Since the right-most time evolution operator in eq 2.22a sits
next tod(E — H) (with a cyclic permutation of operators in the
trace), one can make the replacemerit® — e~iEU" and then
this scalar phase factor is combined with the other time evolution
operator, to give

Although the rate constants given by the MST and the N(E)=(2nh)%f_wmdt tr[0(E — A)EEFBRE]  (2.22b)

Yamamoto correlation functions are the same, the correlation

functions are different, particularly so at short time, where
Yamamoto’s is singular. One can see this explicitly by carrying
out the calculation analytically for the free particle case. MST
show that their correlation function for this TST-like case is

KT (hBl2Y

CMSTr) =
0= 12+ (hpI2)32

(2.16)

A similar calculation for Yamamoto’s correlation functiethat
is, using eq 2.15b rather than®/2Fe~fH2—gives

@ 1 0 - 0"
" e s 07

Both eq 2.16 and eq 2.17 integrate to gk/gh, as they must,
and for long time they both behave as

c®=

(2.17)

; KT(hp\?.3
limC,(t) h(2) It (2.18)
For short time, however, they differ:
imcSTey = KT 2], _ 32t
imcysT() = hﬁ[l 2(h/3)2] (2.19a)
while
. v _ k_Ti h_ﬁ 1/2
limcy () = hﬁ(m) (2.19b)

Although the singularity att= 0 in eq 2.19b is integrable, it is
obviously very undesirable for numerical calculations, which
must be careful to describe this important contribution to the
time integral correctly.

The microcanonical rate expression, i.e., the quantum expres-

sion for the cumulative reaction probabili(E), is essentially

The time integral can then be evaluated using the Fourier
representation of the delta function,

7 dt 5B = 2 o(E — )

so that one obtains the following resiflt,
N(E) = %(Znh)z tr[6(E — H)F 6(E — H) F] (2.23)

showing that the calculation ®f(E) requires only that one have
a way to evaluate the microcanonical density operator.

[1l. Microcanonical Case

a. Practical Implementation. Thirumalai et a® suggested
one interesting way to represent the microcanonical density
operator for use in eq 2.23, namely, a Gaussian prelimit
representation of the delta function,

~ 1/2 "
SE—H)= (%) e e (3.1)
for o sufficiently large. To evaluate the exponential operator,
they used a Magnus-type expansion,

N

g R = |_|e7A°‘('3'7E)2 (3.2)
L

where Aa. = o/N, and if Aa is sufficiently small, simple
approximations for each factor in eq 3.2 are possible. One may
also think of eq 3.1 arising from the Fourier time integral
representation of the delta function,

O(E — FI) = Znih f_wmdt o PHal? (E-Fyuh (3.3)

the same as eq 2.9 with the replacement of the Boltzmannwhere a Gaussian convergence factor has been inserted into the

operator et by the microcanonical density operatdfE —
H),
N(E) = 27h tr[0(E — H)FP|] (2.20)

By making use of the operator identity

integrand to damp the— + regions. Equation 3.3 gives eq
3.1, and it is again clear that te— o limit yields the formally
exact delta function.

A more standard way of cutting off the time integral in the
Fourier representation of the delta function is to use an
exponential convergence factor: thus the integral representation
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S(E— H) = Znih I Q(E-Fhuh (3.4a) N(E) = 4 tr[G*(E)*¢ G (E)é] (3.8a)
1 © . (E—fh wheree; (¢p) is the part of the adsorbing potential in the reactant
= n_hReL/; dt e (product) valley, and = ¢, + ¢,. This expression may be
(3.4b) evaluated in any convenient basis set that spans the interaction
) N . . - ) region and also extends some ways into the absorbing region.
is modified by inserting the factor-é! into the integrand, The explicit matrix expression is then
O(E—H)= n—lhRe [t g UgEHR (3 40) N(E) = 4 tr[(E — ie — H) e ,(E +ie — H) "]  (3.8b)
which damps the long-time behavior. This integral can be with
formally evaluated to give the standard expression e=¢ + € (3.8¢)
O(E—H)= —llm GE(E) (3.5a) It is interesting to note that in eq 3.8 all reference to a specific
T dividing surface has vanished; it is implicit that a dividing
whereG.(E) is the prelimit Green’s function, surface lies somewhere between the reactant and product
absorbing potentials (cf. Figure 1), but there is no dependence
GG(E) =(E+ie—H)™? (3.5b) on its specific choice. This is just as it should be, for as noted

above these formally exact rate expressions are invariant to the
The energy parameteris obviously required to be positive, choice of the dividing surface.
and the limite — O is taken at some appropriate stage to obtain  In recent calculations it has furthermore been shidwimat
the formally exact result. Equations 3.5a and 3.5b can be an extremely efficient way to evaluate the trace in eq 3.8 is to

combined to expres8(E — H) as symmetrize the matrix inside the trace operation as follows,
. . _ N(E) = tr[P(E 3.9a
T where
showing that it is a Lorentzian prelimit representation of the . . 125 . A yn 12
delta function. P(E) = 4¢,"G(E)*€,G(E)e, (3.9b)

A much more effective wa§ to represent the Green's . . ) )
function and density operator, however, is to take eq 3.5 to P_(E) is seen to be a Hermitian operator (or matrix), so that _|ts
be anabsorbing potentiak(q). This idea was motivated by ~ €igenvaluedp(E)} are all real, and from eq 3.9a the CRP is
the negative imaginary potential that is added to the true their sum,
potential energy function,

V(@) — V(a) — ie(q) 3.7)

in time-dependent wave packet calculatidrie prevent reflec- It is also easy to see thR(E) is a positive operator, so that its
tions from the edge of the grid on which the wave function is €igenvalues are all positive. It is not as obvietmit can be
represented; the negative imaginary potential in eq 3.7 is clearly readily showr®—that P(E) is also bounded by their identity
a coordinate-dependent generalization of the positive constantoperator
in eq 3.5. Allowinge to be a (positive) function of coordinates, A
i.e., a potential energy operator, is much better than taking it to P(E)=1 (3.11a)
be a constant, because it can be chosen to be zero in thgyom which it follows that
physically relevant region of space and only “turned on” at the
edges of this region to impose the outgoing wave boundary O=pE)=1 (3.11b)
condition. Absorbing flux in this manner, and thus not allowing
it to return to the interaction region, is analogous to the practice The eigenvalue$p.} can thus be thought of ggobabilities
in a classical calculation of terminating trajectories as soon as and then eq 3.10which gives theexact NE) as the sum of
they exit the interaction region. these “eigen reaction probabilitiesbears an interesting re-
Figure 1 shows a sketch of the potential energy surface for semblance to the simple transition-state approximation in which
the generic reaction H H, — H, + H, with the absorbing N(E) is given as a sum of one-dimensional tunneling (or
potentiale(q) indicated by dashed contours(q) is zero in the transmission) probabilities over all states of the activated
transition-state region, where the reaction dynamics (i.e., complex.
tunneling, recrossing dynamics) takes place, and is turned on The pragmatic reason for focusing on tieaction probability
outside this region. In practice one chooses the interaction operator/matrix FE) defined by eq 3.9 is that it is déw rank
region (the area between the absorbing potentials) to be as smalthat is, the number of its eigenvalugg(E)} that are signifi-
as possible, so that as small a basis set as possible can be useazntly different from zero is very small (compared to the
to represent the operators and evaluate the trace. Choosing itlimension of its matrix representation); the number of its
too small, though, will cause the absorbing potentials to interfere nonzero eigenvalues is approximately the number of states of
with reaction dynamics one is attempting to describe. the activated complex of TST that are energetically accessible
With the microcanonical density operator given by eq 3.5 attotal energf. This means that a Lanczos iteration procedure
(with an appropriate choice faf), straightforward algebraic  applied toP(E) is extremely efficient for determining its nonzero
manipulations (also using eq 2.11a) lead to the following even eigenvalues, the number of such iterations being essentially the
simpler form for the cumulative reaction probabilif, number of nonzero eigenvalues, and this in turn minimizes the

NE = ¥ PO (3.10)



798 J. Phys. Chem. A, Vol. 102, No. 5, 1998

7.8

4.1

2.3

Figure 1. Contour diagram of the potential energy surface for the
collinear H+ H, — H, + H reaction. The dashed lines are contours of
the absorbing potential(g) (which is zero in the interaction region)

for three different choices of it; they all work essentially equally well.

Miller

10 -
w
z

05

oo

0.4 0.6

0.8 1.0 1.2
E [eV]
Figure 2. The cumulative reaction probabilith(E) (solid line) and

the individual eigenvalues d® (dotted lines) as a function of energy
(in electronvolts) for the collinear H H; reaction.

difficulties due to the reciprocals of the absorbing potentials
that occur in it. This approach does wdfid® however, and
bears further consideration because so little effort is required
to construct the matri@e—1.)

Equations 3.83.10 thus provide a practical scheme for
determining the rate constant for a chemical reactiirettly’
and “correctly’. This is not a transition-state “theory” since
calculation of the Green’s function, the matrix inverse Bff
ie — H), is equivalent to solving the Schdimger equation; that
is, it generates the complete quantum dynamics. Since this is
required only in the transition-state region (between the reactant
and product absorbing strips), one may think of this quantum
mechanical calculation as the analogue of a classical trajectory
calculation which begins trajectories on a dividing surface in
the transition-state region and follows them for a short time to
see which ones are reactive.

Finally, it should be noted that Zhang and Li¢htaand
Manthe?! have recently described alternate ways of evaluating
eq 2.23 that are based on Fourier transforming a time-dependent
solution of the Schidinger equation. This is an attractive
approach because it has the capability of determihl(ig) for
many different values oE within one overall calculation.

b. Applications. In recent applicatiori§-18 it has proved
useful to employ a set @rid pointsin coordinate space as the
basis set in which to evaluate eq 3.8b or egs 3.9 and 3.10. These
grid, or discrete variable, methdds2* are proving quite useful
for a variety of molecular quantum mechanical calculations. The
primary advantages of such approaches are that (1) no integrals
are required in order to construct the Hamiltonian matrix (e.g.,
the potential energy matrix is diagonal, the diagonal values being
the values of the potential energy function at the grid points),
and (2) the Hamiltonian matrix is extremely sparse (so that large
systems of linear equations can be solved efficiently).

Figure 1 shows the set of grid points and several possible
choices for the absorbing potentials which yield accurate
resultd6 for the standard test problem, the collineartH, —

H, + H reaction. The important feature to see here is how
close the absorbing potentials can be brought in and how
localized the grid can be taken about the transition-state region.

The points are the coordinate grid for the discrete variation representa-This is the region in which it is necessary to determine the

tion of the Hamiltonian and other operators.

guantum dynamics in order to obtain the correct resuliNid)
(and thusk(T)). No information about reactant and product

overall number of operations of the Greens function that are quantum states is involved in the calculation.

required. (Another, very tantalizing, way to find the eigen

Figure 2 shows the eigen reaction probabilitigs(E)}

reaction probabilities is to determine the eigenvalues of the obtained® for the collinear H+ H, — H, 4+ H reaction and

matrix P(E) " = Y& VAE + i¢ — H)&; Y(E — ie — H)& 2,
which are clearly the value§l/p}. The operatorP(E)~1

their sum,N(E). In this case about100—200 grid points are
needed to span the interaction region, and this is therefore the

requiresno Green’s function operators, but there are numerical dimension of all the matrices &f, G(E), P(E), and so forth, in
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Figure 4. (a) Eigen reaction probabilitie§pc(E)} for the three-
09,5 07 09 - . > dimensional H+ OH — H;0 + H reaction (forJ = 0), as a function
- ’ ' E (é\/) ’ ' of energy. (b) The cumulative reaction probabilN{E) = ¥ «p«(E) for

this reaction.

F_igure 3. (a) Eigen reaction probabilitie§p«(E)} for the three-

dimensional Ht- H; reaction (ford = 0), as a function of total energy. Figure 4a,b shows the eigen reaction probabilities and CRP
(b) The cumulative reaction probability(E) = 3 «p(E)- for the first full dimensional calculatif of the reaction

the grid or discrete variable representation. As seen in Figure dynamics of any four-atom reaction, namely,

2, though, the number of nonzero eigen reaction probabitities

the rank ofP(E) and the number of Lanczos iterations required H, + OH—H + H,0 (3.12)

to obtain these eigenvaluess very small £3) over this entire

region, and this is what makes the procedure described above(There have subsequently been state-to-state reactive scattering

so efficient. calculationg”-28for this reaction for some initial states, though
One can qualitatively identify the individual eigen reaction not a complete set of them that would be required to obtain the

probabilities in Figure 2 with the various states of the activated CRP from eq 1.2.) The dynamics here is quite TST-like, as

complex of transition-state theory. In TST egal(E) would seen from the eigen reaction probabilities in Figure 4a. Here,

rise from O to 1 at the energy of the corresponding state of the moreover, one sees that the staircase structurd(i) has

activated complex (and stay at 1 for all higher energies); the disappeared in Figure 4b. This is readily understood from

deviations from this behavior seen in Figure 2 are due to TST- Figure 4a, because the higher density of states in this six degrees

violating dynamics, i.e., recrossing trajectories in a classical of freedom system causes the eigen reaction probabilities to

picture, and the result of a short-lived collision complex that overlap; that isp:(E) has not fully turned on beforg(E) begins

causes resonances in a quantum descriptifk) would be a to turn on, and so forth. The net result is tN(E) has a very

monotonically increasing function oE if there were no smooth “classical” TST look to it, although all of the tunneling

recrossing flux through the interaction region, and Figure 2 corrections, corner-cutting dynamics, and so on, are being

shows strong deviations from this behavior. described exactly correctly.
Figure 3a,b shows the corresponding eigen reaction prob- The above examples all pertain to bimolecular reactions. A
abilities and CRP for the three-dimensional verst®of the H unimolecular reaction of considerable interest is the isomeriza-

+ H; reaction (for total angular momentuth= 0). Even tion of ketene studied by Lovejoy and Modi¥,

though collision complexes are also formed in the three-

dimensional version of this reactioN(E) appears in Figure 3b H,C'=C=0 < O=C'=CH, (3.13)

to be monotonically increasing with energy in TST-like fashion;

thus monotonicity oN(E) does not guarantee that the underlying where C and Care'?C and'3C, respectively. Figure 5a shows
dynamics is TST-like. One also sees in Figure 3b a remnanta schematic of the potential energy surface for the reaction,
of the staircase structi#an N(E) that results from quantization  indicating that the intermediate oxirene,

of the states of the activated complex in TST; this survives

because the eigen reaction probabilities, at least at low energies, /0\

are not overlapping; that i, (E) rises approximately from 0 c=cC

to 1 beforepy(E) begins to turn on, and so forth. H H
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CO +CH,

is a local minimum on the PES. By very clever experimental CHF%
techniques Lovejoy and Moore were able to determine the

. g ;
microcanonical rat&(E) for reaction 3.13 with very high energy P
resolution and, quite remarkably, observed structure that they /é
interpreted as resonance tunneling via the intermediate meta- " "
stable states of oxirene. CalculationskgE) for this isomer-
ization were thus undertak&to lend support (or not) to this

interpretation of the observed structure. Absorbing potentials
(indicated by the dotted lines in Figure 5a) were located just
outside the transition-state regions connecting oxirene to the
two deep ketene potential minima. The isomerization dynamics
deals with flux from one absorbing region to the other and thus
avoids having to describe the highly excited vibrational motion HE=C-0 0=C=c,
in the ketene wells themselves; this is somewhat analogous to 66406
the procedure in a classical simulation of terminating the
trajectories once they are past the transition region. sex06 |-
Even with this limited treatment of the dynamics, however,
it is not possible to carry out the calculation in its full
dimensionality ofF = 3N — 6 = 9 degrees of freedom (with
total angular momenturd = 0). We thus carried out a CRP
calculation including degrees of freedom, yielding:(E), and
then folded in the other uncoupled degrees of freedom by

microcanonical convolution, 26406 | WV‘W i
> 1e+06 | o
NE) =S NE— ¢, (3.15a) JJ\ | od

n=

4e+06

3e+06

k,(E) (sec”)

0e+00 . - .
8500.0 8750.0 9000.0 9250.0 9500.0

Energy (cm ') above oxirene

where{ e,f*f} are the energy levetlsapproximated as harmonic

oscillators—for the F — f uncoupled degrees of freedom; that Figure 5. (a) Sketch of the potential energy surface for ketene
iS, N = Mg, ..., NE, and isomerization, indicating the oxirene intermediate. The dotted lines
’ o indicate the location of the absorbing potential for the calculation of
E 1 the isomerization rate. (b) Isomerization rate is a function of energy.
_ The dotted line is the experimental result of ref 29 (which cuts off at
s Z hwj(nj +—) (3.15b) P (
j=1+1

€n the indicated energy for experimental reasons), and the solid line is

the reduced dimensional calculation, eq 3.15, using three active degrees
of freedom.
This is the idea of “reduced dimensionality” approximatiéns

and forf = 1 is the standard expression for one-dimensional 1.3b. This may often be the preferred way to proceed, and it is
tunneling corrections to microcanonical transition-state th&ory. indeed true tha(E) has more dynamical information in it than
Figure 5b shows resufsobtained fork(E) via the methods ~ k(T), and this can be useful for physical interpretations.
described above, compared to the experimental ré%(dkstted However, if one is interested in obtainirkfT) for one (or a
line). There is no pretense of being able to match up individual few) values ofT, then it is clearly desirable to be able to compute
structures between the twihe potential energy surface is much  k(T) directly for this value ofT. The methodology for doing
too uncertain for thisbut one does see that the structure this is based on the expression k{T) in terms of the flux
obtained in the theoretical calculations is quite comparable to correlation function, eq 2.12.
that seen experimentally, lending strong support to Lovejoy and a. Practical Implementation. The particular form of the

Moore’s interpretation. flux correlation function we currently find most usefufis
Finally, it should be noted that the methodology described A .
in section Illa for calculating the cumulative reaction probability C(t) = tr[ﬁ(ﬂ)eiHUhf:e—iHUh] (4.1a)

can be used for other physical processes than chemical reactions.

For the transmission of electrons through a complex medium, whereF(B) is the “Boltzmannized” flux operator,

for exampleN(E) is proportional to the transmitted current (here

eq 1.2, with] = 0 and multiplied by some physical constants, IE(,B) _ efﬁﬂlzlgefﬂﬂ/z (4.1b)
is known as the Landauer form&® and Nitzan et at3 have - '

recently using egs 3.8, and so on, to compute the electron g ey 19 efficient evaluation of the above trace is identifying
tunneling current through ordered molecular layers. Similarly, ¢.q operator of low rank to exploit in a manner analogous to

Peskin, Moiseyev, et &f. have used this approach to calculate hat was done for the microcanonical case in eqs-3.91.
the transmission properties of light in optical fibers which have 4. that operator iﬁ(ﬁ), the rank (i.e., number of nonzero
arbitrary (and strong) variation in their index of refraction  giqenyalues) of which is effectively twice the number of states
distribution. of the activated complex that are thermally accessible at
temperatureT. A Lanczos iteration procedure is thus very
efficient for determining these eigenvalfdg and eigenvectors

If one has determineN(E) over a sufficiently wide range of  {|vy0 of F(5). The trace in eq 4.1a is then carried out in this
energy, then the thermal (or canonical) rate conskény is representation, giving the following result for the flux correlation
readily obtainable over some range of temperatlresa eq function3

IV. Canonical Case
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CO) = f,,0)1Flo, 0 (4.2)
n
where{|un(t)J are the time-evolved eigenvectors,
o= e M)y O (4.2b)

Our group has used the split-operator algorithm to generate the f

time evolution in eq 4.2b (and also the action of the Boltzmann
operator €2 in the Lanczos iteration of(8)), but other
methods of “wave packet propagation” could also be used.
At this point it should be noted that the above approach has
some features in common with important contributions that Light
et al3® and Manthe et &’ have independently made to the
efficient calculation ok(T). Also related to these is earlier work
by Metiu et al*® on calculating flux correlation functions where
the properties of the Boltzmannized flux operator were exploited.
The primary feature of the present methodology is that it
minimizes the number of actions of the time evolution operator
that are required. Note also the “conservation of effort” of this
canonical version of the methodology compared to the micro-
canonical version described in section llla: to evaluaig)
via eq 4.2 requires the action of the time evolution operator
exp(-Ht/h) on all eigenvectorsv,Jwith nonzero eigenvalues
fn, and this is about twice the number of states of the activated
complex that are thermally accessible at temperafurélhe
microcanonical calculation dfi(E) via eqs 3.9-3.11 requires
two actions of the Green'’s functidg(E) = (E + i€ — H) 1 for
each Lanczos iteration of operaf®(E) and the number of state
of the activated complex that aenergeticallyaccessible at
energyE. The canonical and microcanonical versions of the
methodology thus require comparable numbers of action of the
time evolution operator and Green'’s function, respectively,

which are essentially the same degree of effort since they are

related as follows,

G(E) = (i) f; dt = (4.3)
b. Applications. Figure 6 shows the flux correlation
function for the reactiot?

Cl+H,—HCI+H (4.4)

for J = 0 total angular momentum fofF = 300 °K and T =
1500 °K. The dynamics here is basically simple TST-like
barrier crossing dynamics, so the correlation function looks
qualitatively similar to the free-particle result, eq 2.16; for
example, it falls effectively to zero y= A3, which is 27 f for

T =300°K. At the higher temperature one does see the onset
of some non-TST dynamics, i.e., recrossing flux that is typical

at higher energies where some trajectories (in classical language)
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Figure 6. Flux—flux autocorrelation function for the G+ H, — HCI
+ H reaction (in 3DJ = 0) for (a) T = 300°K and (b) T = 1500°K.
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have so much energy that they rebound back across the dividingz; e 7. Flux—flux autocorrelation function for the @ HCl — OH

surface.
Figure 7 shows the results of a similar calculation (also for
J = 0) for the reactio#P

O+ HCl— OH + Cl (4.5)

and here though the reaction dynamics is also “direct.,
the correlation function falls te-0 in a time of~AfS—there is
recrossing behavior iI€(t) due to the heavyt light-heavy
nature of the kinematics in this reaction that is well-known to
cause recrossing of the transition-state dividing surface.

c. Treatment of J > 0. The applications discussed above
(including the microcanonical examples in section Ilib) have
all been for zero total angular momentud 0), which is the

+ Cl reaction, forT = 300 °K.

simplest case since there are onN-3 coupled internal degrees

of freedom N = number of atoms of the complete molecular
system). Thel > 0 calculatior® is more difficult because there

is an additional coupled degree of freedom, the component of
total angular momentum along a body-fixed axis, and the
number of states associated with this degree of freedom (the
K- or Q-states) grows witll as (2 + 1). Furthermore, one
must carry out the calculation for many valuesipthat is, the
cumulative reaction probability and thermal rate constant are
given by
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N(E) = 20(23 + 1)NJ(E) (4.5a)

K(T) = 20(23 + 1)ky(T) (4.5b)

where the calculation dfl;(E) andky(T) is a separate calculation
of the type described above for eath (The 2 + 1 factor in

eq 4.5 is from the sum ovéd;, the projection quantum number
of total angular momentum onto a space-fixed axis, on which
the dynamics in field-free space does not depend.)

In reality the situation is not quite so bleak as suggested
above. First, though the body-fixed projection quantum number
K ranges from—J to +J, typically only small values oK
contribute significantly to the rate constant, e gmax < K <
Kmax €ven for largel, so that in practice the size of the basis
set does not continue to grow amcreases. (This is particularly
true if the body-fixed quantization axis is chosen so that the
moment of inertia about it is asmall as possible.) Second,
the dependence &(T) (and analogousIy;(E)) on J is often
very simple and smoothwithin the “J-shifting approximation
(vide infra), for example, Irky(T) is a linear function ofl(J +
1)—so that separate calculations for widely spaced values of
can be carried out and then used to interpolate in order to carry
out the sum in eq 4.5.

Finally, there are simple approximations fbr O that appear
often to be quite accurate. One of the most promising of these
a helicity-conserving approximation (HCA) based on the
instantaneous principle axes (PA) of the molecular system.
(McCurdy and Millef° suggested this in an obscure publication,
and Qi and BowmdhH later came upon it independentiierming
it the “adiabatic rotation” approximatierand have demon-
strated its usefulness and reliability in several different applica-
tions.) Here thel > 0 Hamiltonian is that fod = 0 with the
addition of a generalized centrifugal potential,

Erol@)
whereE/x is the energy of a rigid molecule (whose geometry

is determined by the—6 internal coordinategq) within the
usual symmetric top approximation,

Hy=H; o+ (4.6a)

EJK

rot

(@) = J[A@) + B@IIIE + 1) — K7 + C(a)K?
(4.6b)

A, B, andC being the three rotation constants (e4.= h%

2lp) related to the three instantaneous principle moments of
inertia of the complete molecular system. A calculation is thus
carried out for eacll andK (which is also a conserved quantum
number within the HCA), a calculation equivalent in difficulty
to aJ = 0 calculation, and then

ky(T) = ZkJK(T) (4.6¢)

and similarly for the microcanonical use. Again, typically only
small values oK are required|K| < Knax and it is clear that
kik(T) depends only orK]|.

The simplest approximation, thd-$hifting” approximatior?!

Miller
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Figure 8. (a) J-dependence oky(T) for the Cl+ H, — HCI + H
reaction, for several temperatures. (b) Arrhenius plot of the full rate
constant (summed ovéri.e., eq 4.5b): the solid line is the exact result
(i.e., with no approximation to the rotational motion), the triangles are
the result of the principle axis helicity conserving approximation (which
includes centrifugal distortion but not Coriolis coupling), and the dashed
line is the result of thel-shifting approximation (i.e., an uncoupled
rigid rotor approximation).

term in the Hamiltonian (this is an example of the “reduced

dimensionality” approximation in eq 3.15 above), and for the
canonical case, for example, one has

K(T) = Ky—o(NQiol)

where Qfm is the rotational partition function for a rigid
molecule with the reference geometry

Q:Fot(T) =
; ex;{ —ﬁE(A* +BH(I@+ 1) - K) + C*KZ]} (4.7b)

(4.7a)

If the reference geometry is linear, th&i = « and eq 4.7b
thus includes onlK = 0; this is theextremecase where only
small values of K| contribute. Thel-shifting approximation,
therefore, requires only & = 0 calculation, an enormous

corresponds to assuming that the rotation “constants” in eq 4.6bSimplification. _
are actually constant, evaluated at some reference geometry; Figure 8a shows accurate calculatitihf ky(T) for a range

that is,
A@) — A(@") = A

and so forth. The rotational energy is then simply a constant

of J values for the CH H> reaction discussed above, showing
that oncel is larger than 3 or so, the dependencelas very
simple, of the form expected from the simpleshifting
approximation (sinceC* = 0 here). Figure 8b shows an
Arrhenius plot of the full rate constat{T), compared to the
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result of the simplel-shifting approximation and also to the
HCA. The former is too small, presumably because d¢tly

0 is included?? and it becomes progressively worse for higher V(1)
temperature, being a factor 6f2.6 too small afl = 1500 K;

at 300 K it is~30% too small. The HCA, however, is seen to

be quite satisfactory for the entire temperature range; this is
quite an encouraging state of affairs, because as discussed above,
the HCA requires calculations for only a relatively small number

of (J, K) values, each of which is essentially the effort of the \
= 0 calculation. ‘\

€(r)

V. Effects of Pressure

For many chemical applications, e.g., chemical reactions in
realistic combustion environments, the gas pressures are suf-
ficiently high that bimolecular rate constantand almost always
unimolecular rate constantsire pressure-dependent. In the
Lindemann description of recombination reactions (and their .
inverse, unimolecular dissociation), for example, Sp Sp €p

s 6

A + B < AB* (5.1a)
AB* + M — AB (5.1b)
the pressure of the “bath” gas molecules M plays a central

role: the standard textbook expressfbfor the rate of the
reaction A+ B — AB via the mechanism of eq 5.1 is

k(T.0) = Q,(T)*Ze‘ﬁalqw/m to) (52 HO;
Figure 9. (a) Sketch of a potential energy surface for the-A system
ineq 5.1.r = ais the “dividing surface” for defining the flux, andr)
where{E} and{k} are the energies and unimolecular decay IS the absorbing potential used for carrying out the quantum calculation.
rates of metastable states of the AB* compléx= [M] KgeactiS 52?—;1 ;:Begc;ngfr;r;%na%tiﬁggggijga;? dfsoitggein(zﬂaote_t)hg t—\i/—vc?é’ivT dci)rig
the frequency_of stror_lg (dea_Ct'Vat'ng) collisions that stabilize surfaces, ané: ande, the parts of the absorbing potential in the reactant
the complex (i.e.KgeactiS the bimolecular rate constant for the 5nq product regions.

second step of the mechanism, eq 5.1b, amdis thus

proportional to the pressure of the bath gas), &@) is the deals with the collisional relaxation, eq 5.1b;“€is the
reactant partition function per unit volume. probability of notexperiencing a strong collision between time
Recently, however, it has been shd@&rhow the flux 0 andt.

correlation functions discussed above in sections Il and IV can Qi and Bowmaff carried out the first calculation using this
be used to combine a completely rigorous quantum treatmenttheory, for the H+ CO— HCO recombination, and Mandelsh-
of the first step of the Lindemann reactant of eq 5.1a, i.e., the tam et al*’ carried out similar calculations (though with the
A + B collision dynamics, with the strong collision model for time-independent version of the theory) for{HO, — HO; at
the deactivation step of eq 5.1b. (ltis also possible to go beyond energies below the threshold for the4OOH channel.
the strong collision approximatidfi,but this is considerably More recently Germann and Mill& have shown how the
more complicated.) The derivation proceeds very much along above theoretical description of pressure effects can be general-
the lines of that sketched in section lla: referring to Figure 9a, ized to include the effect of pressure on bimolecukactive
which indicates a dividing surface which defines the “complex” processes, as well as recombination, with application to
AB* (inside of which a strong collision leads to recombination),
the rate constant for recombination is given by O+ OH+M—HO,+M (5.4a)
—H+0,+M (5.4b)

k(Tw)=Q(M* [ dtC(t) e (5.3)

Again, the derivation of the rate expressions follows the same
analysis as in section lla. Referring to Figure 9b, the recom-

whereCx(t) is the flux—flux autocorrelation function with respect bination and reaction rates are given, respectiely, by

to this dividing surface. Not only is eq 5.3 more accurate then
eq 5.2 but it is less ambiguous. One does not have to extract _ 10—t .
individual resonance energies and widths (i.e., decay rates) from Krecomi( T:2) = Q((T) ﬁ) dt e “C, () Crp(t)] (5.5a)
the A + B scattering matrix and decide what is a resonance L1 ot

and what is not; eq 5.3 includes the contribution to recombina- Ky o(T0) = Q(T) " [ dt e 'C (1) (5.5b)
tion from direct (i.e., nonresonant) A B scattering as well as

the (usually more important) contribution from complex forma- where the two flux correlation functions are

tion (i.e., scattering resonances). Equation 5.3 also has a clean . he ifih

separation between the two steps of the Lindemann mecha- Co() = tr[F(B)e"Fe ] (5.6a)
nism: the flux correlation functiol(t) is a property only of . hA —ifith

the A + B scattering dynamics, eq 5.1a, while the factorte Co(D) = tr[F,(B)E™ " F e (5.6b)
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with T T T T ™
0.04 E
F.(B)e PH2F g P12 (5.6¢)
0.02 f -
Ci(t) is the flux—flux autocorrelation, as before, for a dividing
surface located on the reactant side of the complex region (cf.
Figure 8a), anCry(t) is the cross correlation function between
the flux operators-, andFp, the latter defined with respect to

Crlt)
o
k
)

a dividing surface on the product side of the complex region. -0.02 | T
The physical interpretations of eq 5.5 are relatively transpar-

ent: reaction can only occur if flux gets from the reactant region 004} .

r to the product region p without suffering a collision with the . . . .

bath gas, because in the strong collision approximation a 0.0040 r - r v

collision with the bath gas relaxes the system and yields 0.0035 i

recombined product. Sing&y(t) is the probability of flux from
region r to region p in time t ande! is the probability ofnot
having a collision with the bath gas in this time interval, eq 0.0025
5.5b is obtained for the reaction rate. In eq 5.5a, the first term
Jodt e “'Cy(t), is identified as the total loss rate of reactants,
the second termyydt e “'Cyy(t), the loss rate due to reaction,
and so their difference, eq 5.5a, is the rate of loss due to 0.0010
recombination. (The collision-frees(= 0) reaction rate is the 0.0005
time integral of either correlation function, so that the= 0

0.0030

0.0020

ol

© 0.0015

recombination rate is zero.) 0
Eq_uanon 5.5 is seen to havg a very l_Jsefu_I structure for -0.0005 5 5 T ' S =0
practical calculation: along the lines described in section Va, time (ps)

one first finds the eigenvalues and eigenvectors of the Boltz- _. . )
. . Figure 10. Flux—flux correlation functionsC,(t) (top panel) andC,,-

_ma_nmzed flux operator of eq 5.6¢. Ea(_:h of these elggnvectors(t) (bottom panel) for the OH- O — H + O, reaction afT = 1200
is time-evolved, and then the expectation value of eithesr °K. Both correlation functions are shown relative to the reactant flux
Fp is computed with these time-evolved vectors. With the same autocorrelation function at zero tim€;(0).
time evolution one thus obtains both correlation functions in
eq 5.6 which are needed to construct the rate constants in edrST rate constant to obtain the correct resul=3.31. This
5.5. is actually quite surprising, becausstatisticalapproximatiof!

Figure 10 shows the&&wo correlation functions for reaction  predicts essentially no recrossing flux for the reaction in the
5.4 (forJ = 0) at T = 1200 K. The direct peak is barely exothermic direction, & OH— O, + H. The fact that there
discernable inCy(t) because at this temperatuif = 7 fs = is so much recrossing flux is presumably due to the inefficient
0.007 ps. The negative lobe Gf(t), extending ta=0.5 ps, is coupling between the ©0O motion (the incident reaction
due to flux from the HQ complex that decays back to reactants. coordinate) and the light atom-HD, motion (the exit reaction
The cross correlation functidB(t) is zero for short times since  coordinate). Interestingly, classical trajectory calculations
it takes some time to go from the reactant dividing surface to show? approximately this same degree of recrossing flux (i.e.,
the product one. The integrals of both of these correlation small transmission coefficient).
functions are the same and give the collisionless= 0) Finally, Figure 11 show@ the pressure dependence of the
reaction rate, but it is readily apparent that it is easier to obtain rate constants for reaction (OH O — H + O,) and
thew = O reaction rate by computing the integral@(t) rather ~ recombination (OH+ O — HO,) for a low temperature (500
than Cy(t), so as not to have to deal with the cancellation K solid lines) and a high temperature (2000 K, dotted lines).
between the positive short-time direct contribution and the (Figures 11a,b are the same results, with a log and linear scale
negative long-time recrossing contribution in the latter correla- for the abscissa, respectively, to emphasize different regions of
tion function. (Metiu et af® have earlier also found it useful pressure_) The reaction rate is essentia”y independent of
for other purposes to use a cross correlation function rather thanpressure until very high pressure 100 atm), and up to this
the autocorrelation function.) same region of pressure the recombination rate has the typical

Because of the importanteof reaction 5.4 in modeling  |ow-pressure limiting form, i.e., linear in the pressure of the
combustion, it is useful to note some interesting dynamical path gas.
features of even the zero pressure= 0) bimolecular reaction.
If one were to apply ordinary TST, the best choice for the Concluding Remarks
dividing surface would be & in Figure 9b, and then the flux
autocorrelation functior€,(t) noted above, and seen in Figure The methodologies described in sections Il and 1V give one
8D, is the correlation functioB(t) discussed in section IV. The  the possibility of carrying out accurate quantum calculations
area under the short-time positive peakGaft) is the incident for the rate constants of simple chemical reactions (given, of
flux through this surface from the reactant region, and the areacourse, an accurate potential energy surface, which still remains
under the negative lobe is the part of it that recrosses this a practical limitation to widespread applications). The micro-
dividing surface and goes back to reactants. By computing thesecanonical and canonical versions of the theory are each useful
areas separately, one finds tha69% of the incident flux for various applications. For unimolecular reactions (e.g., the
recrosses the dividing surface; that is, the “transmission coef- ketene isomerization discussed in section Ill) one is specifically
ficient” (the correction factor by which one must multiply the interested in the energy dependencek(), while for bimo-
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10-10 . . . the time-dependent self-consistent-field (TD-SCF) approxima-
tion.5% If one furthermore treats the bath degrees of freedom
OH+O->H+Op 7 in the classical limit, then the popular “mixed quantam
"""""" paiy ] classical” Ehrenfest modIresults, whereby one integrates the
time-dependent Schdinger equation for the quantum degrees
of freedom simultaneously with classical equations of motions
for the classical degrees of freedom. Metiu etPdlave in fact
implemented a version of this approach for calculating the flux
autocorrelation function, applied to H atom motion on metal
------- surfaces, where the H atom is treated quantum mechanically
and the surface motion classically. The methodology of section
IVa makes this even more efficient: Wang eb&have recently
carried out such a calculation for a (quantum) double-well
. . . potential coupled to several hundred (classical) harmonic
10 100 1000 10000 oscillator (bath) degrees of freedom, obtaining quite reasonable
P [atm] agreement with Topaler and Mak#*accurate (fully quantum)
6 ' — T T T T T T path integral simulations for this system. It is also clear that
the “bath” in this approach can have a variety of physical mani-
5} ! festations: a liquid solvent, a cluster environment, or a
surrounding protein. This thus allows one to combine the
OH+0->HOz | rigorous quantum treatments described in this paper for the
primary molecular system with classical molecular dynamics
simulations of a complex environment.

Other variations on the above theme are possible. One could
treat the quantum degrees of freedom above witlgeraiclas-
sical approximation rather than fully quantum mechanically, and
S this would be the “mixed semiclassieatlassical” model
1} e OH+O->H+Op recently described by Sun and Millgk. Better than this would

AT T~ Ty be to treatall the degrees of freedom semiclassically (if this is
possible), e.g., thanitial value representatiorflVR)>° of the
semiclassical approximation that is currently receiving a great
_ _ ~ deal of attention. In the HermarKluk>® (coherent state)
Figure 11. Pressure dependence of the reaction and recombination yarsion of the IVR, for example, the time evolution operator is

rates forT = 500 °K and T = 2000°K. (The upper and lower panels . s "
show the same results, with a logarithmic and linear pressure scale,glven by an average over the phase space of initial conditions

10-11%¢

10-12F  OH+0-->HO,

k(T) [cm3/ molecule / s]

10-13}

1014
1

K(T) [10'1 Tom?/ molecule / s]
w
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respectively, to emphasize the different regions of pressure.) for classical trajectories,
lecular reactions one typically wants orkgT) (unlessN(E) is d d
i i i - i —ifith Py 00y ' h
desired for interpretational purposes). The microcanonical and ¢ """ = —Ct(pl,ql)eﬁ(mﬁ Ip,0,D,,q,] (6.1a)
canonical approaches focus on the opera(&) and expf- (27[?1)F

iHt/A], respectively, but these are essentially the same thing (cf. ) )
eq 4.3) and thus entail essentially the same computational effort. VNere Ip,glis a coherent state, i.e., the state whose wave
Nevertheless the organization of the calculation is often different fUNCtion is & minimum uncertainty (Gaussian) wave packet,
and more efficient depending on which version of the theory is P xR
employed. Methodological advances are thus still taking place. X|p,ql= (—) g (Rl gliie(a) (6.1b)

At best, however, full-blown quantum calculations of the type 7
described above will remain limited to small molecular systems p, = p(p1,qs) and q; = qi(p1,q1) are the (classically) time-

(though “small” may be gradually redefined upward as computer evolved phase space variabl€gp;,qs) is the classical action
hardware progresses), so that one is always interested in usefublong the trajectory with these initial conditions, and the
approximations that can make the approaches applicable topreexponential factd:(p1,q.) is the determinant of a particular

larger chemical systems. One such approximation of this type jinear combination of elements of the monodromy matrix,
was mentioned in section llb with regard to the ketene

isomerization, cf. egs 3.15, a “reduced dimensionality” ap- C/(p,,0,) =

proximation of the type advocated by Bownmiaiand his co- 1 ) 1

workers; thel-shifting approximation of section IVc is also of deilaqtla% + dp/ap, — ifvy oq/op, — %3%/3% (6.1c)

this type. Here one simply assumes that some (perhaps large

number of) degrees of freedom are uncoupled from the primary This and other variations of the IVR approach can thus readily

set of degrees of freedom included in the quantum calculation. be used in the quantum expressions of section Il and IV to

The uncoupled degrees of freedom are included in the state-generate semiclassical approximations @git) and N(E), and

counting (which is a convolution structure in the microcanonical the development of these approaches is a matter of ongoing

case and a multiplicative factor in the canonical case) but not research. It has also been recently sh®®h how this

dynamically. semiclassical IVR approximation can be generalized to include
A more accurate way to treat a small primary “system” that electronic degrees of freedom in a dynamically consistent way

is to be described by accurate quantum dynamics, coupled to awith the dynamics of nuclear motion, so that one can use the

secondary “bath” that is treated more approximately, is to approach to describe electronically nonadiabatic processes in

include coupling between the two inawerage manner, e.g., chemical reactions.
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